Adapun rumus-rumus dasar yang digunakan dalam perhitungan pada tabel pelunasan anuitas yaitu rumus anuitas, bunga, dan sisa pinjaman. Besarnya anuitas : $ A = \frac{M.i}{1 - (1+i)^{-n}} \, $ . Nilai A yang dipakai adalah pembulatan ke atas yaitu nilai A$^+$. Untuk besar bunga kita gunakan rumus $ b_1 = M \times i, \, b_2 = S_1 \times i, ... , b_{m+1} = S_m \times i $ . Sedangakan untuk besar angsuran kita gunakan rumus $ A^+ = a_1 + b_1, A^+ = a_2 + b_2, ..., A^+ = a_n + b_n $. Dan untuk sisa pinjaman kita gunakan rumus $ S_1 = M - a_1, \, S_2 = S_1 - a_2, ... , S_{m+1} = S_m - a_{m+1} $.
Adapun langkah-langkah pengisian tabel pelunasan anuitas :
a). Tentukan nilai A, kemudian dibulatkan ke atas.
b). Tentukan bunga pertama ($b_1$) dengan rumus $b_1 = M \times i $
c). Tentukan angsuran pertama ($a_1$) dengan rumus $A^+ = a_1 + b_1 $.
d). Tentukan sisa pinjaman pertama ($S_1$) dengan rumus $ S_1 = M - a_1 $
e). Tentukan bunga kedua ($b_2$ dengan rumus $ b_2 = S_1 \times i $.
f). Tentukan angsuran kedua ($a_2$) dengan rumus $ A^+ = a_2 + b_2 $
g). Tentukan sisa pinjaman kedua ($S_2$) dengan rumus $ S_2 = S_1 - a_2 $
begitu seterusnya sehingga sisa pinjaman nol.
Contoh Soal Tabel pelunasan anuitas :
1). Suatu pinjaman Rp10.000.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 12%/tahun selama 8 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam ratusan ribu, tentukan:
a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan
b. Tabel rencana pelunasan anuitas
c. Pembayaran anuitas terakhir!
Penyelesaian :
*). Diketahui : M = 10.000.000, $ i = 12\% = 0,12 \, $/tahun, dan $ n = 8 \, $ tahun
a). Menentukan nilai anuitasnya :
$ \begin{align} A & = \frac{M.i}{1 - (1+i)^{-n}} \\ & = \frac{10.000.000 \times 0,12}{1 - (1+0,12)^{-8}} \\ & = \frac{1.200.000}{1 - (1,12)^{-8}} \\ & = \frac{1.200.000}{1 - 0,403883228} \\ & = 2.013.028,41 \end{align} $
Artinya kita peroleh anuitas : A = Rp2.013.028,41
Jika dibulatkan ke atas dalam ratusan ribu, maka A$^+$ = Rp2.100.000,00
b. Tabel rencana pelunasan anuitas:
Keterangan Tabel:
*). Pinjaman awal tahun ke-2 = sisa pinjaman akhir tahun ke-1.
Pinjaman awal tahun ke-3 = sisa pinjaman akhir tahun ke-2, dan seterusnya.
*). Bunga + angsuran masing-masing kelas = anuitas hasil pembulatan (A$^+$), kecuali pada baris terakhir (baris ke-8).
*). Sisa pinjaman akhir tahun ke-1 = (pinjaman awal tahun ke-1) - (angsuran ke-1).
Sisa pinjaman akhir tahun ke-2 = (pinjaman awal tahun ke-2) - (angsuran ke-2).
*). Angsuran terakhir = pinjaman awal tahun terakhir.
c. Pembayaran anuitas terakhir (At) :
At = 110.386,73 + 919.889,44 = Rp 1.030.276,17 .
2). Suatu pinjaman Rp12.000.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 15%/tahun selama 7 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam ratusan ribu. Tentukan:
a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan
b. Tabel rencana pelunasan anuitas
c. Pembayaran anuitas terakhir!
Penyelesaian :
*). Diketahui : M = 12.000.000, $ i = 15\% = 0,15 \, $/tahun, dan $ n = 7 \, $ tahun
a). Menentukan nilai anuitasnya :
$ \begin{align} A & = \frac{M.i}{1 - (1+i)^{-n}} \\ & = \frac{12.000.000 \times 0,15}{1 - (1+0,15)^{-7}} \\ & = \frac{1.800.000}{1 - (1,15)^{-7}} \\ & = \frac{1.800.000}{1 - 0,375937040} \\ & = 2.884.324,36 \end{align} $
Artinya kita peroleh anuitas : A = Rp2.884.324,36
Jika dibulatkan ke bawah dalam ratusan ribu, maka A$^-$ = Rp2.800.000,00
b. Tabel rencana pelunasan anuitas:
c. Pembayaran anuitas terakhir (At) :
At = 486.939,23 + 3.246.261,56 = 3.733.200,79 .
Demikian pembahasan materi Tabel Pelunasan Anuitas beserta contoh-contohnya. Selanjutnya silahkan baca juga materi lain yang berkaitan dengan anuitas yaitu penerapan anuitas pada obligasi.
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.