Sisa Pinjaman pada Anuitas

         Blog Koma - Setelah kita melakukan pembayaran anuitas secara terus-menerus maka besarnya pinjaman yang akan kita kembalikan pasti juga akan berkurang sampai pada akhir periode menjadi lunas. Pada artikel ini kita akan membahas materi Sisa Pinjaman pada Anuitas. Jika S$_1$, S$_2$, S$_3$ .... S$_m \, $ berturut-turut merupakan sisa pinjaman setelah pembayaran anuitas pertama, kedua, ketiga .... ke-$m$, maka ada beberapa cara untuk menentukan sisa pinjaman setelah pembayaran anuitas ke-$m$. Ada empat cara yang akan kita bahas dalam menentukan besarnya sisa pinjaman setelah membayarkan anuitas pada periode tertentu.

         Untuk memudahkan dalam mempelajari materi sisa pinjaman, sebaiknya teman-teman mempelajari dulu materi sebelumnya yaitu anuitas dan angsuran. Penghitungan sisa pinjaman sangat berkaitan dengan rumus-rumus pada anuitas dan angsuran.

Cara I : Sisa pinjaman berdasarkan besar Bunga
       Sisa pinjaman dapat dihitung sebagai berikut:
$ b_1 = i . M $
$ b_2 = i . S_1 $
$ b_3 = i . S_2 $
$ b_4 = i . S_3 $
........ ....
$ b_{m+1} = i . S_m $
Sehingga : $ \begin{align} S_m = \frac{b_{m+1}}{i} \end{align} $

Keterangan :
$ s_m = \, $ sisa pinjaman setelah pembayaran anuitas ke-$m$
$ b_{m+1} = \, $ besarnya bunga ke-$(m+1)$
$ i = \, $ suku bunga anuitas
Untuk bisa menggunakan cara I ini, kita akan melibatkan beberapa rumus yaitu :
Anuitas : $ A = \frac{M.i}{1 - (1+i)^{-n}} \, $ dan $ \, A = a_n + b_n $
Angsuran : $ a_n = a_1(1 + i)^{n-1} $
bunga pertama : $ b_1 = i . M $

Contoh soal sisa pinjaman :
1). Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 2,5 tahun. Tentukan:
a. Besarnya anuitas!
b. Sisa pinjaman setelah mengangsur 10 bulan!

Penyelesaian :
*). Diketahui : M = 10.000.000, $ i = 3\% = 0,003 \, $/bulan dan $ n = \, $ 2,5 tahun = 30 bulan.
a). Menentukan besarnya anuitas (A) :
$ \begin{align} A & = \frac{M.i}{1 - (1+i)^{-n}} \\ & = \frac{10.000.000 \times 0,03}{1 - (1+0,03)^{-30}} \\ & = \frac{300.000}{1 - (1,03)^{-30}} \\ & = \frac{300.000}{1 - 0,411986759} \\ & = 510.192,59 \end{align} $
Jadi, besarnya anuitas yaitu Rp510.192,59 yang dibayarkan setiap bulannya.

b). Menentukan Sisa pinjaman setelah mengangsur 10 bulan ($S_{10}$) :
*). berdasarkan rumus $ S_m = \frac{b_{m+1}}{i} \, $ maka $ s_{10} = \frac{b_{11}}{i} $, artinya kita harus menentukan besarnya $b_{11} $ (bunga periode ke-11).
*). untuk menentukan $ b_{11} \, $ kita butuh nilai $ a_{11} $ (angsuran ke-11) dengan rumus $ b_{11} = A - a_{11} $
*). Untuk menentukan besarnya $ a_{11} $ , kita butuh nilai $ a_1 $ dengan rumus $ a_{11} = a_{1} (1 + i)^{10}$.
*). Untuk menentukan $a_1 $ kita butuh nilai $ b_1 $ dengan rumus $ a_1 = A - b_1 $ dan $ b_1 = i.M $.

Kita hitung satu persatu semuanya :
Nilai $ b_1 $ :
$ b_1 = i . M = 0,03 \times 10.000.000 = 300.000 $ .
Nilai $ a_1 $ :
$ a_1 = A - b_1 = 510.192,59 - 300.000 = 210.192,59 $
Nilai $ a_{11} $ :
$ a_{11} = a_1(1+i)^{10} = 210.192,59 \times (1 + 0,03)^{10} = 282.481,26 $
Nilai $ b_{11} $
$ b_{11} = A - a_{11} = 510.192,59 - 282.481,26 = 227.711,33 $
Menentukan sisa pinjaman ($S_{10}$) :
$ S_{10} = \frac{b_{11}}{i} = \frac{227.711,33}{0,03} = 7.590.377,67 $
Jadi, sisa pinjaman setelah membayar 10 kali adalah Rp7.590.377,67.

Cara II : Menentukan sisa pinjaman
Sisa pinjaman setelah pembayaran anuitas ke-$m$ = pokok pinjaman dikurangi jumlah $m$ angsuran yang sudah dibayar.
$ \begin{align} S_m & = M - (a_1 + a_2 + a_3 + ...+ a_m) \\ & = M - (a_1 + a_1(1+i) + a_1(1+i)^2 + ...+ a_1(1+i)^{m-1}) \\ & = M - (a_1 + a_1[(1+i) + (1+i)^2 + ...+ (1+i)^{m-1}] ) \\ & = M - (a_1 + a_1[\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \end{align} $
Sehingga besar pinjaman : $ \begin{align} S_m = M - (a_1 + a_1[\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \end{align} $

dengan nilai $ \displaystyle \sum_{r=1}^{m-1} (1+i)^r] \, $ bisa dicari dari daftar tabel rente kolom $i\% \, $ baris ke-$(m-1)$.
Sebenarnya bentuk $ (a_1 + a_1[(1+i) + (1+i)^2 + ...+ (1+i)^{m-1}] ) \, $ bisa dihitung dengan jumlah pada deret geometri.

Contoh soal :
2). Kita kerjakan soal contoh nomor (1) di atas dengan cara II :
$ \begin{align} S_m & = M - (a_1 + a_1[\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \\ S_m & = M - (a_1 + a_1 \times \text{ daftar nilai akhir rente kolom 3% baris(m-1)} ) \\ S_{10} & = M - (a_1 + a_1 \times \text{ daftar nilai akhir rente kolom 3% baris(10-1)} ) \\ & = 10.000.000 - (210.192,59 + 210.192,59 \times 10,463879311 ) \\ & = 7.590.377,52 \end{align} $
Jadi, sisa pinjaman setelah membayar 10 kali adalah Rp7.590.377,67 (hampir sama dengan cara I).

Cara III Menghitung sisa pinjaman
Sisa pinjaman setelah pembayaran anuitas ke-$m$ = jumlah semua angsuran yang masih harus dibayar yaitu dari $ a_{m+1} \, $ sampai angsuran $ a_n $ .
$ \begin{align} S_m & = (a_{m+1} + a_{m+2} + a_{m+3} + ...+ a_n) \\ & = (a_1+a_2 + ...+a_n) - (a_1 + a_2 + ... + a_m) \\ & = (a_1+a_1(1+i) + ...+a_1(1+i)^{n-1}) \\ & \, \, \, \, - (a_1 + a_1(1+i) + ... + a_1(1+i)^{m-1}) \\ & = (a_1 + a_1[\displaystyle \sum_{r=1}^{n-1} (1+i)^r] ) - (a_1 + a_1[\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \\ & = a_1[\displaystyle \sum_{r=1}^{n-1} (1+i)^r] - a_1[\displaystyle \sum_{r=1}^{m-1} (1+i)^r] \\ & = a_1([\displaystyle \sum_{r=1}^{n-1} (1+i)^r] - [\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \end{align} $
Sehingga besar pinjaman : $ \begin{align} S_m = a_1([\displaystyle \sum_{r=1}^{n-1} (1+i)^r] - [\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \end{align} $

dengan nilai $ \displaystyle \sum_{r=1}^{m-1} (1+i)^r] \, $ bisa dicari dari daftar tabel rente kolom $i\% \, $ baris ke-$(m-1)$ dan dengan nilai $ \displaystyle \sum_{r=1}^{n-1} (1+i)^r] \, $ bisa dicari dari daftar tabel rente kolom $i\% \, $ baris ke-$(n-1)$.

Contoh soal :
3). Kita kerjakan soal contoh nomor (1) di atas dengan cara III dengan $ n = 30 $
$ \begin{align} S_m & = a_1([\displaystyle \sum_{r=1}^{n-1} (1+i)^r] - [\displaystyle \sum_{r=1}^{m-1} (1+i)^r] ) \\ S_m & = a_1(\text{ daftar nilai akhir rente kolom 3% baris(n-1)} \\ & \, \, \, \, - \text{ daftar nilai akhir rente kolom 3% baris(m-1)} ) \\ S_{10} & = 210.192,59 (\text{ daftar nilai akhir rente kolom 3% baris(30-1)} \\ & \, \, \, \, - \text{ daftar nilai akhir rente kolom 3% baris(10-1)} ) \\ & = 210.192,59 \times (46,575415706 - 10,463879311) \\ & = 210.192,59 \times 36,111536395 \\ & = 7.590.377,36 \end{align} $
Jadi, sisa pinjaman setelah membayar 10 kali adalah Rp7.590.377,36 (hampir sama dengan cara I).

Cara IV Menghitung sisa pinjaman
Sisa pinjaman setelah pembayaran anuitas ke-$m$ = nilai dari semua anuitas yang belum dibayar dihitung pada akhir tahun ke-$m$:
$ \begin{align} S_m & = \frac{A}{(1+i)} + \frac{A}{(1+i)^2} + \frac{A}{(1+i)^3} + ... + \frac{A}{(1+i)^{m-n}} \\ & = A[(1+i)^{-1} +(1+i)^{-2} + (1+i)^{-3} + ... + (1+i)^{n-m} ] \\ & = A \times \displaystyle \sum_{r=1}^{n-m} (1+i)^r \end{align} $
Sehingga besar pinjaman : $ \begin{align} S_m = A \times \displaystyle \sum_{r=1}^{n-m} (1+i)^r \end{align} $

dengan nilai $ \displaystyle \sum_{r=1}^{n-m} (1+i)^r \, $ bisa dicari dari daftar tabel rente kolom $i\% \, $ baris ke-$(n-m)$ .

Contoh soal :
4). Kita kerjakan soal contoh nomor (1) di atas dengan cara III dengan $ n = 30 $
$ \begin{align} S_m & = A \times \displaystyle \sum_{r=1}^{n-m} (1+i)^r \\ & = A \times (\text{ daftar nilai akhir rente kolom 3% baris(n-m)} \\ & = A \times (\text{ daftar nilai akhir rente kolom 3% baris(30 - 10)} \\ & = A \times (\text{ daftar nilai akhir rente kolom 3% baris(20)} \\ & = 510.192,59 \times 14,877474860 \\ & = 7.590.377,43 \end{align} $
Jadi, sisa pinjaman setelah membayar 10 kali adalah Rp7.590.377,43 (hampir sama dengan cara I).

         Demikian pembahasan materi Sisa Pinjaman pada Anuitas beserta contoh-contohnya. Selanjutnya silahkan baca juga materi lain yang berkaitan anuitas dan angsuran yaitu tabel pelunasan anuitas dan anuitas yang dibulatkan.

1 komentar:

  1. Apakah Anda memerlukan pinjaman mendesak untuk melunasi utang Anda atau apakah Anda memerlukan pinjaman ekuitas
    untuk meningkatkan bisnis Anda? Apakah Anda ditolak oleh bank dan lainnya
    lembaga keuangan? Apakah Anda membutuhkan konsolidasi pinjaman atau hipotek? Cari tidak
    lebih banyak karena kami di sini untuk membuat semua masalah keuangan Anda menjadi sesuatu
    lalu.

    Ini adalah perusahaan pinjaman yang mudah. Kami menawarkan pinjaman kepada mereka yang tertarik pada
    suku bunga yang wajar 2%. Kisaran berkisar dari $ 5,000.00 ke a
    maksimal $ 100.000.000,00 dolar.

    Pinjaman kami dijamin dengan baik karena keamanan maksimum adalah prioritas kami.

    Hubungi kami melalui email: oceanfmortgages@gmail.com


    Salam
    Max Bent
    oceanfmortgages@gmail.com
     
    2% Pinjaman dan Jaminan Asli
    oceanfmortgages@gmail.com

    BalasHapus