Selasa, 06 Oktober 2015

Pertidaksamaan Bentuk Nilai Mutlak


         Blog Koma - Pertidaksamaan Bentuk Nilai Mutlak merupakan pertidaksamaan yang melibatkan bentuk nilai mutlak. Untuk memudahkan memahami pertidaksamaan bentuk nilai mutlak ini, sebaiknya kita mempelajari dahulu materi "Pertidaksamaan secara Umum", "Sifat-sifat Pertidaksamaan", "Pertidaksamaan Linear", "Pertidaksamaan Kuadrat", "Pertidaksamaan Pecahan", dan "Pertidaksamaan Bentuk Akar".
Definisi Nilai Mutlak
       Nilai mutlak dari suatu bilangan $ x \, $ dinotasikan $ |x| $ .
Definisi nilai mutlak $ x \, $ ($|x|$) :
              $ |x| = \left\{ \begin{array}{cc} x & , x \geq 0 \\ -x & , x < 0 \end{array} \right. $
Artinya $ |x| = x \, $ atau $ |x| = -x \, $ tergantung nilai $ x $

Dengan definisi nilai mutlak, maka nilai mutlak setiap bilangan nilainya selalu positif.

Contoh :
1). $ |3| = 3 \, \, \, $ dan $ |-3| = -(-3) = 3 $

2). Jabarkan bentuk mutlak $ | x - 1 | \, $ berdasarkan definisi nilai mutlak sehingga tanda mutlaknya hilang.!
Penyelesaian :
$ |x-1| = \left\{ \begin{array}{cc} x - 1 & , x - 1 \geq 0 \rightarrow x \geq 1 \\ -(x - 1) & , x - 1 < 0 \rightarrow x < 1 \end{array} \right. $
Jadi, untuk $ x \geq 1, \, $ nilai $ |x-1| = x-1 \, $ dan untuk $ x < 1 \, $ nilai $ |x-1| = -(x-1) $

3). Tentukan nilai $ | 2 - \sqrt{5} | - \sqrt{5} + 4 - |-1| $ ?
Penyelesaian :
*). $ | 2 - \sqrt{5} | = - (2-\sqrt{5}) = \sqrt{5} - 2 \, $ (karena nilai $ 2 - \sqrt{5} < 0 $ )
*). $ |-1| = - (-1) = 1 $
*). Menentukan hasilnya :
$ | 2 - \sqrt{5} | - \sqrt{5} + 4 - |-1| = (\sqrt{5} - 2 ) - \sqrt{5} + 4 - (1) = 1 $

Sifat-sifat Nilai Mutlak
       Berikut beberapa sifat-sifat nilai mutlak yang dapat kita gunakan untuk mengerjakan soal-soal pertidaksamaan bentuk nilai mutlak.
Sifat-sifat nilai mutlak :
1). $ |x| = \sqrt{x^2} $
2). $ |x|^2 = x^2 $
3). $ |x| < |y| \rightarrow (x-y)(x+y) < 0 $
(berlaku juga untuk $ |x| > |y| \rightarrow (x-y)(x+y) > 0 $ )
4). $ |x| < a \rightarrow -a < x < a $
(berlaku juga $ |x| \leq a \rightarrow -a \leq x \leq a $ )
5). $ |x| > a \rightarrow x < -a \, \text{ atau } \, x > a $
(berlaklu juga $ |x| \geq a \rightarrow x \leq -a \, \text{ atau } \, x \geq a $
6). $ \left| \frac{x}{y} \right| = \frac{|x|}{|y|} $
7). $ |x.y| = |x|.|y| $

Contoh
1). Tentukan semua nilai $ x \, $ yang memenuhi $ | x - 1 | < 3 $ ?
Penyelesaian :
$ \spadesuit $ Berdasarkan sifat 4 : nilai $ a = 3 $
$ \begin{align} | x & - 1 | < 3 \\ -3 < x & - 1 < 3 \, \, \, \, \text{(tambahkan 1 ke semua ruas)} \\ -3 + 1 < x & - 1 + 1 < 3 + 1 \\ -2 < x & < 4 \end{align} $
Jadi, nilai $ x \, $ yang memenuhi adalah $ \{ -2 < x < 4 \} $ .

2). Himpunan penyelesaian pertidaksamaan $ \frac{|x| + 1 }{x} \leq 2 , \, $ untuk $ x \in R \, $ adalah ...?
Penyelesaian :
$ \clubsuit $ Berdasarkan definisi nilai mutlak :
$ |x| = \left\{ \begin{array}{cc} x & , x \geq 0 \\ -x & , x < 0 \end{array} \right. $
Artinya penyelesaian kita bagi menjadi dua kasus :
*). Untuk $ x \geq 0 , \, $ nilai $ |x| = x $
$ \begin{align} \frac{|x| + 1 }{x} & \leq 2 \\ \frac{x + 1 }{x} & \leq 2 \\ \frac{x + 1 }{x} - 2 & \leq 0 \\ \frac{x + 1 }{x} - \frac{2x}{x} & \leq 0 \\ \frac{x + 1 - 2x }{x} & \leq 0 \\ \frac{-x + 1 }{x} & \leq 0 \end{align} $
Akar pembilang : $ -x + 1 = 0 \rightarrow x = 1 $
Akar penyebut : $ x = 0 \, $ (akar penyebut tidak ikut)
Garis bilangannya :
Karena $ x \geq 0, \, $ maka HP1 = $ \{ x \geq 0 \} \cap \{ x < 0 \vee x \geq 1 \} = \{ x \geq 1 \} $
*). Untuk $ x < 0 , \, $ nilai $ |x| = -x $
$ \begin{align} \frac{|x| + 1 }{x} & \leq 2 \\ \frac{-x + 1 }{x} & \leq 2 \\ \frac{-x + 1 }{x} - 2 & \leq 0 \\ \frac{-x + 1 }{x} - \frac{2x}{x} & \leq 0 \\ \frac{-x + 1 - 2x }{x} & \leq 0 \\ \frac{-3x + 1 }{x} & \leq 0 \end{align} $
Akar pembilang : $ -3x + 1 = 0 \rightarrow x = \frac{1}{3} $
Akar penyebut : $ x = 0 \, $ (akar penyebut tidak ikut)
Garis bilangannya :
Karena $ x < 0, \, $ maka HP2 = $ \{ x < 0 \} \cap \{ x < 0 \vee x \geq \frac{1}{3} \} = \{ x < 0 \} $
Jadi, solusinya : HP = $ HP1 \cup HP2 = \{ x < 0 \, \text{ atau } \, x \geq 1 \} $


3). Tentukan himpunan penelesaian pertidaksamaan $ \left| \frac{x-1}{x+2} \right| \geq 1 $ ?
Penyelesaian :
$ \spadesuit $ Kuadratkan kedua ruas berdasarkan sifat 2,
$ \begin{align} \left| \frac{x-1}{x+2} \right| & \geq 1 \\ \left| \frac{x-1}{x+2} \right|^2 & \geq 1^2 \\ \left( \frac{x-1}{x+2} \right)^2 & \geq 1 \\ \left( \frac{x-1}{x+2} \right)^2 - 1 & \geq 0 \\ \left( \frac{x-1}{x+2} - 1 \right)\left( \frac{x-1}{x+2} + 1 \right) & \geq 0 \\ \left( \frac{x-1}{x+2} - \frac{x+2}{x+2} \right)\left( \frac{x-1}{x+2} + \frac{x+2}{x+2} \right) & \geq 0 \\ \left( \frac{(x-1)-(x+2)}{x+2} \right)\left( \frac{(x-1)+(x+2)}{x+2} \right) & \geq 0 \\ \left( \frac{-3}{x+2} \right)\left( \frac{2x + 1 }{x+2} \right) & \geq 0 \\ \frac{-3(2x+1)}{(x+2)^2} & \geq 0 \end{align} $
akar pembilang : $ 2x + 1 = 0 \rightarrow x = -\frac{1}{2} $
akar penyebut : $ x + 2 = 0 \rightarrow x = -2 $
*). Garis bilangannya
Jadi, solusinya HP = $ \{ x < -2 \vee -2 < x < -\frac{1}{2} \} $

4). Penyelesaian dari pertidaksamaan $ |3x-1| > |x+1| \, $ adalah ...?
Penyelesaian :
$ \clubsuit $ Berdasarkan sifat 3 : $ |A| > |B| \rightarrow (A-B)(A+B)>0 $
Misalkan $ A = 3x -1 \, $ dan $ B = x + 1 $
$ \begin{align} |3x-1| & > |x+1| \\ [(3x-1)-(x+1)][(3x-1)+(x+1)] & > 0 \\ [2x - 2][4x] & > 0 \\ x = 1 \vee x & = 0 \end{align} $
Jadi, solusinya HP = $ \{ x < 0 \vee x > 1 \} $

5). Tentukan himpunan penyelesaian (HP) dari $ \left| |x| + x \right| \leq 2 $ !
Penyelesaian :
$ \spadesuit $ Berdasarkan definisi nilai mutlak :
$ |x| = \left\{ \begin{array}{cc} x & , x \geq 0 \\ -x & , x < 0 \end{array} \right. $
Artinya penyelesaian kita bagi menjadi dua kasus :
*). Untuk $ x \geq 0 , \, $ nilai $ |x| = x $
$ \left| |x| + x \right| = | x + x| = 2x $
$ \begin{align} \left| |x| + x \right| & \leq 2 \\ 2x & \leq 2 \\ x & \leq 1 \end{align} $
Diperoleh HP1 = $ \{ x \leq 1 \} $
*). Untuk $ x < 0 , \, $ nilai $ |x| = -x $
$ \left| |x| + x \right| = | -x + x| = 0 $
$ \begin{align} \left| |x| + x \right| & \leq 2 \\ 0 & \leq 2 \, \, \, \, \text{(benar)} \end{align} $
Artinya semua nilai $ x < 0 \, $ memenuhi pertidaksamaan.
Diperoleh HP2 = $ \{ x < 0 \} $
Jadi, solusinya HP = $ HP1 \cup HP2 = \{ x < 0 \} \cup \{ x \leq 1 \} = \{ x \leq 1 \} $

6). Jika $ x < 3 \, $ dan $ \left| |x-5| - 2 \right| < x , \, $ maka tentukan semua nilai $ x \, $ yang memenuhi!
Penyelesaian :
$ \clubsuit $ Definisi nilai mutlak : $ |x-5| = \left\{ \begin{array}{cc} x-5 & , x \geq 5 \\ -(x-5) & , x < 5 \end{array} \right. $
Karena yang diminta $ x < 3, \, $ maka $ |x-5| = -(x-5) = 5 - x $
Sehingga : $ \left| |x-5| - 2 \right| = \left| (5-x) - 2 \right| = | 3 - x | $
$ \clubsuit $ Definisi nilai mutlak : $ |3 - x| = \left\{ \begin{array}{cc} 3 - x & , x \leq 3 \\ -(3-x) & , x > 3 \end{array} \right. $
Karena yang diminta $ x < 3, \, $ maka $ |3-x| = 3 - x $
Artinya bentuk $ \left| |x-5| - 2 \right| = 3 - x $
$ \clubsuit $ Menyelesaikan pertidaksamaan
$ \begin{align} \left| |x-5| - 2 \right| & < x \\ | 3 - x | & < x \\ 3 - x & < x \\ - 2x & < -3 \, \, \, \, \text{(bagi -2, tanda dibalik)} \\ x & > \frac{3}{2} \end{align} $
Jadi, HP = $ \{ x > \frac{3}{2} \} \cap \{ x < 3 \} = \{ \frac{3}{2} < x < 3 \} $

6 komentar:

  1. Maaf tapi tulisan nya tidak bisa terbaca

    BalasHapus
    Balasan
    1. hallow @regita

      Terima kasih untuk kunjungannya ke blog koma ini.

      Untuk tulisan tidak bisa terbaca, mungkin karena pengaruh koneksi internet saja.

      Setelah saya buka halaman ini, bisa terbaca kok dan semua tulisannya muncul dengan baik.

      Terima kasih untuk masukannya.

      Hapus
  2. Balasan
    1. Hallow @slamet winarno

      Terima kasih untuk kunjungannya ke blog koma ini.

      Jika sekali membaca belum mengerti, silahkan dibaca lagi artikelnya. Semoga bisa dipahami pembahasannya.

      Seandainya setelah beberapa kali masih belum mengerti, mungkin karena materi Pertidaksamaan Bentuk Nilai Mutlak ini memang sulit untuk dipelajari secara mandiri. SARAN kami, sebaiknya cari teman atau pengajar yang bisa menjelaskan secara langsung materi ini ke saudara @slamet.

      Tetap Semangat Belajarnya.

      Terima kasih.

      Hapus
  3. itu nomer 2 Yang (|x|+1)/x<=2
    kan HPnya Yang pertama x<1
    berarti 0 termasuk?
    tapi kalau dimasukkan berarti tak terdefinisi.
    kalau saya cek di symbolab bukan x<1 tapi x<0
    *cek hasil akhir, kayaknya udah bener, Cuma kok hasil Union HP1 dan HP2 jadi x<1 hmmm
    makasih infonya. ntah nilai mutlak ini membingungkan.

    BalasHapus
    Balasan
    1. Terima kasih untuk pertanyaan dan koreksinya.

      Ternyata setelah saya cek lagi, di jawaban akhirnya salah dalam menggabungkan yaitu union HP1 dan HP2.
      Hasilnya seharusnya $ \{ x < 0 \vee x \geq 1 \} $.
      Seperti itu.

      Terima kasih.
      Selamat belajar.
      Akan segera saya perbaiki pembahasannya.

      Hapus