Vektor Posisi dan Vektor Nol

         Blog Koma - Setelah sebelumnya kita mempelajari materi "pengertian vektor dan penulisannya" dan materi "panjang vektor dan vektor satuan", nah pada artikel ini kita lanjutkan dengan pembahasan materi Vektor Posisi dan Vektor Nol, dimana materi ini juga bagian dari "materi vektor tingkat SMA" yang akan kita bahas. Kita bagi menjadi dua bagian pembahasan yaitu vektor posisi dan vektor nol. Berikut penjelasan masing-masing vektor posisi dan vektor nol.

Vektor Posisi
       Misalkan suatu vektor kita gambar pada bidang Cartesius, vektor posisi suatu titik adalah vektor yang titik pangkalnya di titik pangkal koordinat (pusat koordinat) dan titik ujungnya di titik itu. Titik pusat koordinat adalah titik $ (0,0 ) $ di R$^2$ dan titik $ (0,0,0) $ di R$^3$.

$\clubsuit \, $ Vektor posisi di R$^2$
     Misalkan titik P adalah sebuah titik pada bidang koordinat Cartesius di R$^2$, vektor posisi dari titik P dilambangkan $ \vec{OP} = \vec{p} $. Jika koordinat titik P adalah $ P(x_1,y_1) $, maka vektor posisi dari titik P adalah
$ \vec{OP} = \vec{p} = \left( \begin{matrix} x_1 \\ y_1 \end{matrix} \right) \, $
atau dalam vektor baris yaitu $ \vec{OP} = \vec{p} = (x_1 , \, y_1) $.
Penulisan vektor posisi dari titi P boleh $ \vec{OP} $ atau $ \vec{p} $.

$\clubsuit \, $ Vektor posisi di R$^3$
     Misalkan titik Q adalah sebuah titik pada bidang koordinat Cartesius di R$^3$, vektor posisi dari titik Q dilambangkan $ \vec{OQ} $ atau $ \vec{q} $. Jika koordinat titik Q adalah $ Q(x_1,y_1,z_1) $, maka vektor posisi dari titik Q adalah
$ \vec{OQ} = \vec{q} = \left( \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right) \, $
atau dalam vektor baris yaitu $ \vec{OQ} = \vec{q} = (x_1 , \, y_1 , \, z_1) $.
Catatan :
*). Jika $ \vec{p} = \left( \begin{matrix} x_1 \\ y_1 \end{matrix} \right) $ adalah vektor posisi titik P, maka titik P berkoordinat $(x_1,y_1) $
*). Jika $ \vec{q} = \left( \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right) $ adalah vektor posisi titik Q, maka titik Q berkoordinat $(x_1,y_1,z_1) $

Contoh Soal vektor posisi :

1). Tentukan vektor posisi dari koordinat titik-titik $ A(1,5,2) $, $ B(-2,0,3) $ dan $ C(3,-1,4) $!
Penyelesaian :
*). Berikut adalah vektor posisi masing-masing vektor :
-). vektor posisi titik A :
$ \vec{OA} = \left( \begin{matrix} 1 \\ 5 \\ 2 \end{matrix} \right) \, $ atau $ \vec{a} = \left( \begin{matrix} 1 \\ 5 \\ 2 \end{matrix} \right) $
-). vektor posisi titik B :
$ \vec{OB} = \left( \begin{matrix} -2 \\ 0 \\ 3 \end{matrix} \right) \, $ atau $ \vec{b} = \left( \begin{matrix} -2 \\ 0 \\ 3 \end{matrix} \right) $
-). vektor posisi titik C :
$ \vec{OC} = \left( \begin{matrix} 3 \\ -1 \\ 4 \end{matrix} \right) \, $ atau $ \vec{c} = \left( \begin{matrix} 3 \\ -1 \\ 4 \end{matrix} \right) $

2). Diketahui vektor posisi $ \vec{p} = \left( \begin{matrix} 2 \\ -1 \end{matrix} \right) $ dan $ \vec{q} = \left( \begin{matrix} -3 \\ 4 \end{matrix} \right) $. Tentukan :
a). Koordinat titik P dan titik Q,
b). Vektor $ \vec{PQ} $.
Penyelesaian :
a). Koordinat titik P dan titik Q,
*). Koordinat titik masing-masing :
-). Koordinat titik P adalah $ P(2, -1) $
-). Koordinat titik Q adalah $ Q(-3,4) $.
b). Vektor $ \vec{PQ} $.
*). menentukan vektor $ \vec{PQ} $ :
$ \vec{PQ} = Q - P = ( -3 - 2, \, 4 - (-1)) = ( -5, \, 5) $
atau dalam vektor kolom : $ \vec{PQ} = \left( \begin{matrix} -5 \\ 5 \end{matrix} \right) $

Vektor Nol
       Vektor Nol adalah vektor yang titik pangkal dan titik ujungnya berimpit. Suatu vektor nol memiliki panjang nol. Arah dari vektor nol tidak tentu. Misalkan vektor $ \vec{AA} $, $ \vec{BB} $ , $ \vec{CC} $ , dan semacamnya disebut vektor nol. Vektor nol dilambangkan $ \vec{o} $. Vektor nol untuk di R$^2$ adalah $ \vec{o} = \left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $ dan vektor nol untuk di R$^3$ adalah $ \vec{o} = \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) $.

Ilustrasi vektor Nol :
Perhatikan gambar vektor berikut ini,
Dari gambar, vektor nol $ \vec{AA} $ dapat kita peroleh dengan menjumlahkan beberapa vektor sehingga titik pangkal vektor $ \vec{AA} $ adalah titik A dan titik ujung vektor $ \vec{AA} $ adalah titik A juga, dimana $ \vec{AA} $ bisa kita peroleh dengan penjumlahan :
$ \vec{AA} = \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EA} $ .
Untuk konsep penjumlahan vektor akan kita pelajari pada artikel lainnya di blog koma ini yaitu pada artikel "Penjumlahan dan Pengurangan Vektor".

Contoh soal vektor nol :

3). Tentukan vektor nol dari titik-titik $ A(-2,3) $ dan $ B(1, -3, -1 ) $!
Penyelesaian :
*). Vektor nol dari masing-masing koordinat :
-). vektor nol dari titik $ A(-2,3) $
$ \vec{AA} = A - A = (-2 - (-2), \, 3 - 3 ) = (0, \, 0 ) $
atau dalam vektor kolom : $ \vec{AA} = \vec{o} = \left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $
-). vektor nol dari titik $ B(1, -3, -1 ) $
$ \vec{BB} = B - B = (1 -1 , \, -3 - (-3) , \, -1 - (-1) ) = (0, \, 0 , \, 0 ) $
atau dalam vektor kolom : $ \vec{BB} = \vec{o} = \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) $.

       Demikian pembahasan materi Vektor Posisi dan Vektor Nol dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Vektor Basis Normal Standar".

Tidak ada komentar:

Posting Komentar