Konsep Teknik Integral Substitusi Aljabar
Sesuai namanya, substitusi aljabar, artinya kita akan memisalkan suatu fungsi dengan bentuk
aljabar tertentu agar mudah kita integralkan atau soal integral tersebut bisa kita selesaikan.
Misalkan ada bentuk integral $ \int [f(x)]^n g(x) dx \, $ yang sulit langsung kita integralkan dengan rumus dasar integral, maka kita substitusikan dengan cara memisalkan yaitu :
$ u = f(x) \, , $ sehingga turunan dari $ u $ adalah
$ u^\prime = \frac{du}{dx} = f^\prime (x) \rightarrow dx = \frac{du}{u^\prime} \, $ atau $ \, dx = \frac{du}{f^\prime (x) } $ .
Sehingga soalnya menjadi :
$ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{u^\prime } \, $ atau
$ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{ f^\prime (x) } $
Catatan :
Teknik substitusi aljabar ini dikatakan berhasil jika turunan dari $ u \, $ bisa mencoret fungsi lain yang tidak dimisalkan yaitu fungsi $ g(x) $.
Misalkan ada bentuk integral $ \int [f(x)]^n g(x) dx \, $ yang sulit langsung kita integralkan dengan rumus dasar integral, maka kita substitusikan dengan cara memisalkan yaitu :
$ u = f(x) \, , $ sehingga turunan dari $ u $ adalah
$ u^\prime = \frac{du}{dx} = f^\prime (x) \rightarrow dx = \frac{du}{u^\prime} \, $ atau $ \, dx = \frac{du}{f^\prime (x) } $ .
Sehingga soalnya menjadi :
$ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{u^\prime } \, $ atau
$ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{ f^\prime (x) } $
Catatan :
Teknik substitusi aljabar ini dikatakan berhasil jika turunan dari $ u \, $ bisa mencoret fungsi lain yang tidak dimisalkan yaitu fungsi $ g(x) $.
1). Tentukan hasil integral dari : $ \int 2x (4x^2 + 5)^{15} dx $ ?
Penyelesaian :
*). Untuk mengunakan rumus dasar, bentuk $ 2x (4x^2 + 5)^{15} \, $ harus kita jabarkan menjadi bentuk $ (ax^n + bx^m + ...) \, $ , tapi akan butuh waktu yang lama untuk menjabarkan pangkat 15, berarti kita gunakan teknik integral.
*). Kita misalkan $ u = 4x^2 + 5 $
sehingga turunannya : $ \frac{du}{dx} = 8x \rightarrow dx = \frac{du}{8x} $
*). Menenyelesaikan soalnya :
$ \begin{align} \int 2x (4x^2 + 5)^{15} dx & = \int 2x (u)^{15} \frac{du}{8x} \, \, \, \, \, \text{(sederhanakan)} \\ & = \int (u)^{15} \frac{du}{4} \\ & = \frac{1}{4} \int (u)^{15} du \\ & = \frac{1}{4} . \frac{1}{16} u^{16} + c \\ & = \frac{1}{64} u^{16} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = \frac{1}{64} (4x^2 + 5)^{16} + c \end{align} $
Jadi, hasil dari $ \int 2x (4x^2 + 5)^{15} dx = \frac{1}{64} (4x^2 + 5)^{16} + c $.
2). Tentukan hasil integral dari : $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx $ ?
Penyelesaian :
*). Kita misalkan $ u = x^2 + 4x - 5 \rightarrow u^\prime = 2x + 4 $
*). Menenyelesaikan soalnya :
$ \begin{align} \int (4x + 8) \sqrt{x^2 + 4x - 5} dx & = \int (4x + 8) \sqrt{u} \frac{du}{u^\prime} \\ & = \int (4x + 8) \sqrt{u} \frac{du}{2x + 4 } \\ & = \int 2(2x + 4) \sqrt{u} \frac{du}{2x + 4 } \, \, \, \, \, \text{(sederhanakan)} \\ & = \int 2 \sqrt{u} du \\ & = 2 \int u^\frac{1}{2} du \\ & = 2 . \frac{1}{\frac{1}{2} + 1} u^{\frac{1}{2} + 1} + c \\ & = 2 . \frac{1}{\frac{3}{2} } u^{\frac{3}{2} } + c \\ & = 2 . \frac{2}{3} u^{1 + \frac{1}{2} } + c \\ & = \frac{4}{3} u^1 . u^{\frac{1}{2} } + c \\ & = \frac{4}{3} u . \sqrt{u} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c \end{align} $
Bentuk $ \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c = \frac{4}{3} \sqrt{(x^2 + 4x - 5)^3} + c $
Jadi, hasil dari $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx = \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c $.
atau $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx = \frac{4}{3} \sqrt{(x^2 + 4x - 5)^3} + c $.
3). Tentukan hasil integral dari : $ \int \frac{3x-1}{\sqrt{3x^2 - 2x + 7}} dx $ ?
Penyelesaian :
*). Kita misalkan $ u = 3x^2 - 2x + 7 \rightarrow u^\prime = 6x - 2 = 2(3x - 1) $
*). Menenyelesaikan soalnya :
$ \begin{align} \int \frac{3x-1}{\sqrt{3x^2 - 2x + 7}} dx & = \int \frac{3x-1}{\sqrt{u}} \frac{du}{u^\prime} \\ & = \int \frac{3x-1}{\sqrt{u}} \frac{du}{2(3x - 1) } \, \, \, \, \, \text{(sederhanakan)} \\ & = \int \frac{1}{\sqrt{u}} \frac{du}{2 } \\ & = \frac{1}{2} \int u^{-\frac{1}{2}} du \\ & = \frac{1}{2} \frac{1}{-\frac{1}{2} + 1} u^{-\frac{1}{2} + 1} + c \\ & = \frac{1}{2} \frac{1}{\frac{1}{2} } u^{\frac{1}{2} } + c \\ & = \frac{1}{2} .2 \sqrt{u} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = \sqrt{3x^2 - 2x + 7} + c \end{align} $
Jadi, hasil dari $ \int \frac{3x-1}{\sqrt{3x^2 - 2x + 7}} dx = \sqrt{3x^2 - 2x + 7} + c $.
4). Tentukan hasil integral dari : $ \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx $ ?
Penyelesaian :
*). Kita misalkan $ u = \sqrt{x} + 2 \rightarrow u^\prime = \frac{1}{2\sqrt{x}} $
*). Menenyelesaikan soalnya :
$ \begin{align} \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} \frac{du}{u^\prime} \\ & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} \frac{du}{\frac{1}{2\sqrt{x}} } \\ & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} . 2\sqrt{x} du \, \, \, \, \, \text{(sederhanakan)} \\ & = \int 10\sqrt{ (u )^3} du \\ & = 10 \int u^\frac{3}{2} du \\ & = 10 . \frac{1}{\frac{3}{2} + 1} u^{\frac{3}{2} + 1} + c \\ & = 10 . \frac{1}{\frac{5}{2} } u^{\frac{5}{2} } + c \\ & = 10 . \frac{2}{5} \sqrt{u^5} + c \\ & = 4 \sqrt{u^5} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = 4 \sqrt{(\sqrt{x} + 2)^5} + c \, \, \, \, \, \text{(atau)} \\ & = 4 (\sqrt{x} + 2)^2\sqrt{ \sqrt{x} + 2 } + c \end{align} $
Jadi, hasil dari $ \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx = 4 \sqrt{(\sqrt{x} + 2)^5} + c $.
5). Tentukan hasil integral dari : $ \int 6x^2 \sin 3x^3 dx $ ?
Penyelesaian :
*). Kita misalkan $ u = 3x^3 \rightarrow u^\prime = 9x^2 $
*). Menenyelesaikan soalnya :
$ \begin{align} \int 6x^2 \sin 3x^3 dx & = \int 6x^2 \sin u \frac{du}{u^\prime} \\ & = \int 6x^2 \sin u \frac{du}{9x^2} \, \, \, \, \, \text{(sederhanakan)} \\ & = \int 2 \sin u \frac{du}{3} \\ & = \frac{2}{3} \int \sin u du \\ & = \frac{2}{3} (-\cos u) + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = -\frac{2}{3} \cos 3x^3 + c \end{align} $
Jadi, hasil dari $ \int 6x^2 \sin 3x^3 dx = -\frac{2}{3} \cos 3x^3 + c $.
6). Tentukan hasil integral dari : $ \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx $ ?
Penyelesaian :
*). Kita misalkan $ u = \sqrt{x} + 4 \rightarrow u^\prime = \frac{1}{2\sqrt{x}} $
*). Menenyelesaikan soalnya :
$ \begin{align} \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx & = \int \frac{\cos u}{\sqrt{x}} \frac{du}{u^\prime} \\ & = \int \frac{\cos u}{\sqrt{x}} \frac{du}{\frac{1}{2\sqrt{x}} } \\ & = \int \frac{\cos u}{\sqrt{x}} 2\sqrt{x} du \, \, \, \, \, \text{(sederhanakan)} \\ & = 2\int \cos u du \\ & = 2 \sin u + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = 2 \sin (\sqrt{x} + 4) + c \end{align} $
Jadi, hasil dari $ \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx = 2 \sin (\sqrt{x} + 4) + c $.
7). Tentukan hasil integral dari : $ \int \frac{\sec ^2 \left( 2 - \frac{1}{\sqrt{x}} \right)}{2\sqrt{x^3}} dx $ ?
Penyelesaian :
*). Kita misalkan $ u = 2 - \frac{1}{\sqrt{x}} = 2 - u^{-\frac{1}{2}} \rightarrow u^\prime = \frac{1}{2\sqrt{x^3}} $
*). Menenyelesaikan soalnya :
$ \begin{align} \int \frac{\sec ^2 \left( 2 - \frac{1}{\sqrt{x}} \right)}{2\sqrt{x^3}} dx & = \int \frac{\sec ^2 u}{2\sqrt{x^3}} \frac{du}{u^\prime} \\ & = \int \frac{\sec ^2 u}{2\sqrt{x^3}} \frac{du}{\frac{1}{2\sqrt{x^3}} } \\ & = \int \frac{\sec ^2 u}{2\sqrt{x^3}} 2\sqrt{x^3} du \, \, \, \, \, \text{(sederhanakan)} \\ & = \int \sec ^2 u du \\ & = \tan u + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = \tan \left( 2 - \frac{1}{\sqrt{x}} \right) + c \end{align} $
Jadi, hasil dari $ \int \frac{\sec ^2 \left( 2 - \frac{1}{\sqrt{x}} \right)}{2\sqrt{x^3}} dx = \tan \left( 2 - \frac{1}{\sqrt{x}} \right) + c $.
Rumus umum integral $ \int k(ax+b)^n dx \, $ dengan $ n \neq -1 $
Dengan teknik integral substitusi maka kita bisa langsung menemukan rumus umum dari :
misalkan : $ u = ax + b \rightarrow u^\prime = a $
$ \begin{align} \int k(ax+b)^n dx & = \int k(ax+b)^n dx \\ & = \int k(u)^n \frac{du}{a} \\ & = \frac{k}{a} \int (u)^n du \\ & = \frac{k}{a} \frac{1}{n+1} (ax+b)^{n+1} + c \end{align} $
Kita peroleh : $ \int k(ax+b)^n dx = \frac{k}{a} \frac{1}{n+1} (ax+b)^{n+1} + c $.
Bentuk rumus ini sangat akan membantu kita terutama pada integral parsial.
misalkan : $ u = ax + b \rightarrow u^\prime = a $
$ \begin{align} \int k(ax+b)^n dx & = \int k(ax+b)^n dx \\ & = \int k(u)^n \frac{du}{a} \\ & = \frac{k}{a} \int (u)^n du \\ & = \frac{k}{a} \frac{1}{n+1} (ax+b)^{n+1} + c \end{align} $
Kita peroleh : $ \int k(ax+b)^n dx = \frac{k}{a} \frac{1}{n+1} (ax+b)^{n+1} + c $.
Bentuk rumus ini sangat akan membantu kita terutama pada integral parsial.
8). tentukan integral dari $ \int 4(2x-5)^{31} dx $
Penyelesaian :
$ \begin{align} \int 4(2x-5)^{31} dx & = \frac{k}{a} . \frac{1}{n+ 1} (ax+b)^{n+1} + c \\ & = \frac{4}{2} . \frac{1}{31+ 1} (2x-5)^{31+1} + c \\ & = 2.\frac{1}{32} (2x-5)^{32} + c \\ & = \frac{1}{16} (2x-5)^{32} + c \end{align} $
Jadi, hasil dari $ \int 4(2x-5)^{31} dx = \frac{1}{16} (2x-5)^{32} + c $ .
9). tentukan integral dari $ \int \sqrt{3x+2} dx $
Penyelesaian :
$ \begin{align} \int \sqrt{3x+2} dx & = \int (3x+2)^\frac{1}{2} dx \\ & = \frac{k}{a} . \frac{1}{n+ 1} (ax+b)^{n+1} + c \\ & = \frac{1}{3} . \frac{1}{ \frac{1}{2}+ 1} (3x+2)^{\frac{1}{2}+1} + c \\ & = \frac{1}{3} . \frac{1}{ \frac{3}{2} } (3x+2)^{\frac{3}{2}} + c \\ & = \frac{1}{3} . \frac{2}{3} (3x+2)^{\frac{3}{2}} + c \\ & = \frac{2}{9} (3x+2)^{\frac{3}{2}} + c \end{align} $
Jadi, hasil dari $ \int \sqrt{3x+2} dx = \frac{2}{9} (3x+2)^{\frac{3}{2}} + c $ .
Rumus umum integral $ \int k(ax+b)^n dx \, $ dengan $ n = -1 $
Dengan teknik integral substitusi maka kita bisa langsung menemukan rumus umum dari :
misalkan : $ u = ax + b \rightarrow u^\prime = a $
$ \begin{align} \int k(ax+b)^{-1} dx & = \int \frac{k}{ax+b} dx \\ & = \int \frac{k}{u} \frac{du}{a} \\ & = \frac{k}{a} \int \frac{1}{u} du \\ & = \frac{k}{a} \ln (u) + c \\ & = \frac{k}{a} \ln (ax+b) + c \end{align} $
Kita peroleh : $ \int k(ax+b)^{-1} dx = \int \frac{k}{ax+b} dx = \frac{k}{a} \ln (ax+b) + c $.
Bentuk rumus ini sangat akan membantu kita terutama pada integral membagi pecahan.
misalkan : $ u = ax + b \rightarrow u^\prime = a $
$ \begin{align} \int k(ax+b)^{-1} dx & = \int \frac{k}{ax+b} dx \\ & = \int \frac{k}{u} \frac{du}{a} \\ & = \frac{k}{a} \int \frac{1}{u} du \\ & = \frac{k}{a} \ln (u) + c \\ & = \frac{k}{a} \ln (ax+b) + c \end{align} $
Kita peroleh : $ \int k(ax+b)^{-1} dx = \int \frac{k}{ax+b} dx = \frac{k}{a} \ln (ax+b) + c $.
Bentuk rumus ini sangat akan membantu kita terutama pada integral membagi pecahan.
10). tentukan integral dari $ \int \frac{3}{2x-5} dx $
Penyelesaian :
$ \begin{align} \int \frac{3}{2x-5} dx & = \frac{k}{a} \ln (ax+b) + c \\ & = \frac{3}{2} \ln (2x-5) + c \end{align} $
Jadi, hasil dari $ \int \frac{3}{2x-5} dx = \frac{3}{2} \ln (2x-5) + c $ .
Terima kasih paparannya.....sangat membantu kami dalam belajar.
BalasHapusKalo bisa mohon dibuat urutan pokok bahasan mengenai integral agar prosesnya lancar. Salam.
terima kasih untuk msukkannya dan kunjungannya ke blog koma ini pak james.
Hapusiya, memang hampir semua materi di blog koma ini setiap bab nya belum diisi urutan pembahasannya. ini masukkan yang baik sekali, akan kami upayakan untuk menyusun urutan daftar pembahasannya.
terima kasih.
sangat terbantukan dengan pemaparan materi integral pak
BalasHapusHallow @Farrel,
HapusTerimakasih untuk kunjungannya ke blog koma.
Blog ter-enak dalam menemani saya belajar, bahkan lebih mudah dimengerti daripada textbook kebanyakan... Sepertinya lebih enak kalau ada daftar isinya... Terimakasih banyak!
BalasHapusHallow @kyuna
HapusTerima kasih untuk sarannya.
Iya, harusnya lebih baik jika ada daftar isinya. Namun, kami sekarang lgi fokus untuk menambah materi yg lainnya dulu, setelah itu baru kami coba untuk menyusun daftar isi setiap babnya.
Terima kasih untuk kunjungannya ke blog koma.
Semoga terus memberikan manfaat.