Menentukan Daerah Himpunan Penyelesaian (DHP) dengan Uji Tanda
Dari namanya yaitu "uji tanda", maka disini kita akan menggunakan tanda yang ada. Tanda yang dimaksud
adalah nilainya positif atau negatif.
Langkah-langkah Menentukan DHP dengan Uji Tanda :
Bentuk umum pertidaksamaannya : $ ax+by \leq c \, $ atau $ \, ax + by \geq c $.
a). Tanda ketaksamaannya ada dua kemungkinan yaitu $ \leq \, $ atau $ \, \geq $.
Tanda ketaksamaannya ini kita beri nilai $ T_1 , \, $
Untuk tanda $ \leq , \, $ maka nilai $ T_1 < 0 \, $ (negatif).
Untuk tanda $ \geq , \, $ maka nilai $ T_1 > 0 \, $ (positif).
b). Tanda selanjutnya adalah tanda pada koefisien $ x \, $ kita tulis ($T_x$) atau tanda pada koefisien $ y \, $ kita tulis ($T_y$) yang masing-masing bisa bernilai positif atau negatif.
c). Kita kalikan kedua tanda dari bagian (a) dan (b) sebelumnya.
Menggunakan tanda $ x \, $ :
$ T_1 \times T_x > 0 \, $ (positif), maka yang benar sebelah kanan garis.
$ T_1 \times T_x < 0 \, $ (negatif), maka yang benar sebelah kiri garis.
Menggunakan tanda $ y \, $ :
$ T_1 \times T_y > 0 \, $ (positif), maka yang benar daerah bagian atas garis.
$ T_1 \times T_y < 0 \, $ (negatif), maka yang benar daerah bagian bawah garis.
Ringkasan dari teori di atas yaitu :
Menggunakan Tanda $ x $ ,
$ ax + by \, \, T_1 \, \, c \left\{ \begin{array}{cc} T_1 \times T_x > 0 \, \text{(benar daerah kanan)} \\ T_1 \times T_x > 0 \, \text{(benar daerah kiri)} \end{array} \right. $
Menggunakan Tanda $ y $ ,
$ ax + by \, \, T_1 \, \, c \left\{ \begin{array}{cc} T_1 \times T_y > 0 \, \text{(benar daerah atas)} \\ T_1 \times T_y > 0 \, \text{(benar daerah bawah)} \end{array} \right. $
Catatan :
*). Kita cukup menggunakan salah satu tanda saja baik tanda $ x \, $ atau tanda $ y \, $ karena hasilnya pasti sama saja.
*). Untuk daerah yang benar dari hasil perkaliannya,
i). menggunakan tanda $ x \, $ berarti harus diingat sumbu X yaitu positif sebelah kanan dan negatif sbelah kiri.
ii). Begitu juga kalau menggunakan tanda $ y $ , ingat sumbu Y yaitu positif bagian atas dan negatif bagian bawah.
Langkah-langkah Menentukan DHP dengan Uji Tanda :
Bentuk umum pertidaksamaannya : $ ax+by \leq c \, $ atau $ \, ax + by \geq c $.
a). Tanda ketaksamaannya ada dua kemungkinan yaitu $ \leq \, $ atau $ \, \geq $.
Tanda ketaksamaannya ini kita beri nilai $ T_1 , \, $
Untuk tanda $ \leq , \, $ maka nilai $ T_1 < 0 \, $ (negatif).
Untuk tanda $ \geq , \, $ maka nilai $ T_1 > 0 \, $ (positif).
b). Tanda selanjutnya adalah tanda pada koefisien $ x \, $ kita tulis ($T_x$) atau tanda pada koefisien $ y \, $ kita tulis ($T_y$) yang masing-masing bisa bernilai positif atau negatif.
c). Kita kalikan kedua tanda dari bagian (a) dan (b) sebelumnya.
Menggunakan tanda $ x \, $ :
$ T_1 \times T_x > 0 \, $ (positif), maka yang benar sebelah kanan garis.
$ T_1 \times T_x < 0 \, $ (negatif), maka yang benar sebelah kiri garis.
Menggunakan tanda $ y \, $ :
$ T_1 \times T_y > 0 \, $ (positif), maka yang benar daerah bagian atas garis.
$ T_1 \times T_y < 0 \, $ (negatif), maka yang benar daerah bagian bawah garis.
Ringkasan dari teori di atas yaitu :
Menggunakan Tanda $ x $ ,
$ ax + by \, \, T_1 \, \, c \left\{ \begin{array}{cc} T_1 \times T_x > 0 \, \text{(benar daerah kanan)} \\ T_1 \times T_x > 0 \, \text{(benar daerah kiri)} \end{array} \right. $
Menggunakan Tanda $ y $ ,
$ ax + by \, \, T_1 \, \, c \left\{ \begin{array}{cc} T_1 \times T_y > 0 \, \text{(benar daerah atas)} \\ T_1 \times T_y > 0 \, \text{(benar daerah bawah)} \end{array} \right. $
Catatan :
*). Kita cukup menggunakan salah satu tanda saja baik tanda $ x \, $ atau tanda $ y \, $ karena hasilnya pasti sama saja.
*). Untuk daerah yang benar dari hasil perkaliannya,
i). menggunakan tanda $ x \, $ berarti harus diingat sumbu X yaitu positif sebelah kanan dan negatif sbelah kiri.
ii). Begitu juga kalau menggunakan tanda $ y $ , ingat sumbu Y yaitu positif bagian atas dan negatif bagian bawah.
1). Tentukan DHP dari pertidaksamaan
a). $ 2x + 3y \leq 6 $
b). $ 2x + 3y \leq -6 $
c). $ -2x + 3y \geq 6 $
d). $ 2x - 3y \geq 6 $
e). $ -2x - 3y \leq 6 $
f). $ x \geq 3 $
g). $ y \leq 2 $
Penyelesaian :
*). Untuk menyelesaikan dan menentukan DHP nya, kita harus menggambarnya dulu.
Silahkan baca : "Persamaan dan Grafik Bentuk Linear".
a). $ 2x + 3y \leq 6 \rightarrow (0,2), (3,0) $
tadan dari $ \leq \, $ adalah negatif, sehingga $ T_1 < 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ positif, sehingga $ T_x > 0 $.
nilai $ T_1 \times T_x < 0 \, $ (negatif kali positif = negatif).
artinya yang benar adalah daerah sebelah kiri garis yang merupakan DHP dari $ 2x + 3y \leq 6 $.
*). Menggunakan tanda $ y $ :
Tanda $ y \, $ positif, sehingga $ T_y > 0 $.
nilai $ T_1 \times T_y < 0 \, $ (negatif kali positif = negatif).
artinya yang benar adalah daerah sebelah bawah garis yang merupakan DHP dari $ 2x + 3y \leq 6 $.
*). Grafik dan DHP nya :
Catatan : Selanjutnya kita hanya menggunakan salah satu tanda saja.
b). $ 2x + 3y \leq -6 \rightarrow (0,-2), (-3,0) $
tadan dari $ \leq \, $ adalah negatif, sehingga $ T_1 < 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ positif, sehingga $ T_x > 0 $.
nilai $ T_1 \times T_x < 0 \, $ (negatif kali positif = negatif).
artinya yang benar adalah daerah sebelah kiri garis yang merupakan DHP dari $ 2x + 3y \leq -6 $.
*). Grafik dan DHP nya :
c). $ -2x + 3y \geq 6 \rightarrow (0,2), (-3,0) $
tadan dari $ \geq \, $ adalah positif, sehingga $ T_1 > 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ negatif, sehingga $ T_x < 0 $.
nilai $ T_1 \times T_x < 0 \, $ (positif kali negatif = negatif).
artinya yang benar adalah daerah sebelah kiri garis yang merupakan DHP dari $ -2x + 3y \geq 6 $.
*). Grafik dan DHP nya :
d). $ 2x - 3y \geq 6 \rightarrow (0,-2),(3,0) $
tadan dari $ \geq \, $ adalah positif, sehingga $ T_1 > 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ positif, sehingga $ T_x > 0 $.
nilai $ T_1 \times T_x > 0 \, $ (positif kali positif = positif).
artinya yang benar adalah daerah sebelah kanan garis yang merupakan DHP dari $ 2x - 3y \geq 6 $.
*). Grafik dan DHP nya :
e). $ -2x - 3y \leq 6 \rightarrow (0,-2), (-3,0) $
tadan dari $ \leq \, $ adalah negatif, sehingga $ T_1 < 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ negatif, sehingga $ T_x < 0 $.
nilai $ T_1 \times T_x > 0 \, $ (negatif kali negatif = positif).
artinya yang benar adalah daerah sebelah kanan garis yang merupakan DHP dari $ -2x - 3y \leq 6 $.
*). Grafik dan DHP nya :
f). $ x \geq 3 $
tadan dari $ \geq \, $ adalah positif, sehingga $ T_1 > 0 $.
*). Menggunakan tanda $ x $ :
Tanda $ x \, $ positif, sehingga $ T_x > 0 $.
nilai $ T_1 \times T_x > 0 \, $ (positif kali positif = positif).
artinya yang benar adalah daerah sebelah kanan garis yang merupakan DHP dari $ x \geq 3 $.
*). Grafik dan DHP nya :
g). $ y \leq 2 $
tadan dari $ \leq \, $ adalah negatif, sehingga $ T_1 < 0 $.
*). Menggunakan tanda $ y $ :
Tanda $ y \, $ positif, sehingga $ T_y > 0 $.
nilai $ T_1 \times T_y < 0 \, $ (negatif kali positif = negatif).
artinya yang benar adalah daerah sebelah bawah garis yang merupakan DHP dari $ y \leq 2 $.
*). Grafik dan DHP nya :