Rumus Integral Fungsi Aljabar
Untuk $ n $ bilangan rasional dengan $ n \neq - 1$, dan $ a, c $ adalah bilangan real maka
berlaku aturan:
i). $ \int x^n dx = \frac{1}{n+1}x^{n+1} + c $
ii). $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
Khusus untuk pankatnya $ - 1 \, $ maka berlaku aturan :
i). $ \int x^{-1} dx = \int \frac{1}{x} dx = \ln x + c $
ii). $ \int ax^{-1} dx = \int \frac{a}{x} dx = a \ln x + c $
dengan fungsi $ \ln x \, $ dibaca "len $ x $" yang sama dengan fungsi logaritma dengan basis $ e = 2,718... $
i). $ \int x^n dx = \frac{1}{n+1}x^{n+1} + c $
ii). $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
Khusus untuk pankatnya $ - 1 \, $ maka berlaku aturan :
i). $ \int x^{-1} dx = \int \frac{1}{x} dx = \ln x + c $
ii). $ \int ax^{-1} dx = \int \frac{a}{x} dx = a \ln x + c $
dengan fungsi $ \ln x \, $ dibaca "len $ x $" yang sama dengan fungsi logaritma dengan basis $ e = 2,718... $
1). Tentukan hasil integral dari bentuk berikut :
a). $ \int x^3 dx $
b). $ \int 6x^3 dx $
c). $ \int \frac{3}{x} dx $
d). $ \int \sqrt{x} dx $
e). $ \int 5\sqrt[3]{x^2} dx $
f). $ \int x^2.\sqrt[3]{x^2} dx $
Penyelesaian :
*). Kita langsung gunakan rumus integral fungsi aljabar di atas.
*). Kita membutuhkan sifat eksponen :
$ \begin{align} a^{m+n} = a^m.a^n, \, \sqrt{a} = a^{\frac{1}{2}} \end{align} \, $ dan $ \begin{align} \, \sqrt[n]{a^m} = a^\frac{m}{n} \end{align} $
a). $ \int x^3 dx , \, $ artinya $ n = 3 $
$ \int x^3 dx = \frac{1}{3+1}x^{3+1} + c = \frac{1}{4}x^4 + c $.
b). $ \int 6x^3 dx , \, $ artinya $ a = 6, n = 3 $
$ \int 6x^3 dx = \frac{6}{3+1}x^{3+1} + c = \frac{6}{4}x^4 + c = \frac{3}{2}x^4 + c $.
c). $ \int \frac{3}{x} dx , \, $ artinya $ n = -1 $
$ \int \frac{3}{x} dx = \int 3x^{-1} dx = 3 \ln x + c $
d). $ \int \sqrt{x} dx = \int x^\frac{1}{2} dx , \, $ artinya $ n = \frac{1}{2} $
$ \begin{align} \int \sqrt{x} dx & = \int x^\frac{1}{2} dx \\ & = \frac{1}{\frac{1}{2} + 1 } x^{\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2}} x^\frac{3}{2} + c \\ & = \frac{2}{3}x^\frac{3}{2} + c \\ & = \frac{2}{3}x^{1 + \frac{1}{2} } + c = \frac{2}{3}x^1.x^\frac{1}{2} + c \\ & = \frac{2}{3}x\sqrt{x} + c \end{align} $
Jadi, hasil $ \int \sqrt{x} dx = \frac{2}{3}x^\frac{3}{2} + c = \frac{2}{3}x\sqrt{x} + c $
e). $ \int 5\sqrt[3]{x^2} dx = \int 5 x^\frac{2}{3} dx , \, $ artinya $ n = \frac{2}{3} $
$ \begin{align} \int 5\sqrt[3]{x^2} dx & = \int 5 x^\frac{2}{3} dx \\ & = \frac{5}{\frac{2}{3} + 1} x^{\frac{2}{3} + 1} + c \\ & = \frac{5}{\frac{5}{3} } x^{\frac{5}{3} } + c \\ & = 5 . \frac{3}{5} x^{\frac{5}{3} } + c \\ & = 3 x^{\frac{5}{3} } + c \\ & = 3 x^{1 + \frac{2}{3} } + c \\ & = 3 x^1.x^{ \frac{2}{3} } + c \\ & = 3 x\sqrt[3]{x^2} + c \end{align} $
Jadi, hasil $ \int 5\sqrt[3]{x^2} dx = 3 x^{\frac{5}{3} } + c = 3 x\sqrt[3]{x^2} + c $
f). $ \int x^2.\sqrt[3]{x^2} dx = \int x^2.x^\frac{2}{3} dx = \int x^{2 + \frac{2}{3}} dx = \int x^\frac{8}{3} dx , \, $ artinya $ n = \frac{8}{3} $
$ \begin{align} \int x^2.\sqrt[3]{x^2} dx & = \int x^\frac{8}{3} dx \\ & = \frac{1}{\frac{8}{3} + 1} x^{\frac{8}{3} + 1} + c \\ & = \frac{1}{\frac{11}{3} } x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{3 + \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 . x^{ \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 \sqrt[3]{x^2} + c \end{align} $
Jadi, hasil $ \int x^2.\sqrt[3]{x^2} dx = \frac{3}{11} x^{\frac{11}{3} } + c = \frac{3}{11} x^3 \sqrt[3]{x^2} + c $
Sifat-sifat Integral Tak Tentu
Untuk memudahkan dalam mengerjakan integral, sebaiknya kita harus menguasai juga sifat-sifat integral tak tentu sebagai
berikut :
1). $ \int k dx = kx + c \, $ dimana $ k \, $ adalah suatu konstanta
2). $ \int k f(x) dx = k \int f(x) dx $
(konstanta bisa dikeluarkan terlebih dahulu).
3). $ \int [f(x) + g(x) ] dx = \int f(x) dx + \int g(x) dx $
4). $ \int [f(x) - g(x) ] dx = \int f(x) dx - \int g(x) dx $
Catatan :
*). Untuk sifat (3) dan (4), jika ada beberapa suku suatu fungsi, maka masing-masing suku bisa diintegralkan langsung.
*). Jika ada bentuk perkalian fungsi atau pembagian fungsi, maka tidak bisa diintegralkan langsung, tetapi harus dijabarkan terlebih dahulu sehingga terbentuk fungsi $\, ( ax^n + bx^m + cx^k + .... ) $ , setelah itu baru masing-masing suku kita integralkan.
1). $ \int k dx = kx + c \, $ dimana $ k \, $ adalah suatu konstanta
2). $ \int k f(x) dx = k \int f(x) dx $
(konstanta bisa dikeluarkan terlebih dahulu).
3). $ \int [f(x) + g(x) ] dx = \int f(x) dx + \int g(x) dx $
4). $ \int [f(x) - g(x) ] dx = \int f(x) dx - \int g(x) dx $
Catatan :
*). Untuk sifat (3) dan (4), jika ada beberapa suku suatu fungsi, maka masing-masing suku bisa diintegralkan langsung.
*). Jika ada bentuk perkalian fungsi atau pembagian fungsi, maka tidak bisa diintegralkan langsung, tetapi harus dijabarkan terlebih dahulu sehingga terbentuk fungsi $\, ( ax^n + bx^m + cx^k + .... ) $ , setelah itu baru masing-masing suku kita integralkan.
2). Tentukan hasil integral berikut ini :
a). $ \int 3 dx $
b). $ \int 3x^5 dx $
c). $ \int (x^2 + x) dx $
d). $ \int (x^2 - x) dx $
e). $ \int (x^3 - 2x + 5) dx $
f). $ \int (x^2+2)(2x-3) dx $
g). $ \int \frac{x^3+2x^2-1}{3x^2} dx $
h). $ \int \frac{x+4}{\sqrt{x}} dx $
i). $ \int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx $
Penyelesaian :
a). $ \int 3 dx = 3x + c \, $ (sifat 1)
b). berdasarkan difat (2) :
$ \int 3x^5 dx = 3 \int x^5 dx = 3 . \frac{1}{5+1}x^{5+1} + c = 3 . \frac{1}{6}x^6 + c = \frac{1}{2}x^6 + c $
c). berdasarkan sifat (3) :
$ \int (x^2 + x) dx = \int x^2 dx + \int x dx = \frac{1}{2+1}x^{2+1} + \frac{1}{1+1}x^{1+1} + c = \frac{1}{3}x^3 + \frac{1}{2}x^2 + c $
d). berdasarkan sifat (4) :
$ \int (x^2 - x) dx = \int x^2 dx - \int x dx = \frac{1}{2+1}x^{2+1} - \frac{1}{1+1}x^{1+1} + c = \frac{1}{3}x^3 - \frac{1}{2}x^2 + c $
e). masing-masing suku langsung diintegralkan :
$ \begin{align} \int (x^3 - 2x + 5) dx & = \int x^3 dx - \int 2x dx + \int 5 dx \\ & = \frac{1}{3+1}x^{3+1} - \frac{2}{1+1}x^{1+1} + 5x + c \\ & = \frac{1}{4}x^4 - \frac{2}{2}x^2 + 5 + c \\ & = \frac{1}{4}x^4 - \frac{2}{2}x^2 + 5 + c \\ & = \frac{1}{4}x^4 - x^2 + 5 + c \end{align} $
f). Jabarkan dulu bentuk perkaliannya, kemudian integralkan masing-masing suku :
$ \begin{align} \int (x^2+2)(2x-3) dx & = \int ( 2x^3 - 3x^2 + 4x - 6 ) dx \\ & = \frac{2}{4}x^4 - \frac{3}{3}x^3 + \frac{4}{2}x^2 - 6x + c \\ & = \frac{1}{2}x^4 - x^3 + 2x^2 - 6x + c \end{align} $
g). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} $ .
$ \begin{align} \int \frac{x^3+2x^2-1}{3x^2} dx & = \int \frac{x^3}{3x^2}+\frac{2x^2}{3x^2}-\frac{1}{3x^2} dx \\ & = \int \frac{x}{3 }+\frac{2 }{3 }-\frac{1}{3x^2} dx \\ & = \int \frac{1}{3}x +\frac{2 }{3 }-\frac{1}{3 } x^{-2} dx \\ & = \frac{1}{3}. \frac{1}{1+1}x^{1+1} +\frac{2 }{3 }x-\frac{1}{3 }. \frac{1}{-2+1} x^{-2+1} + c \\ & = \frac{1}{3}. \frac{1}{2}x^2 +\frac{2 }{3 }x-\frac{1}{3 }. \frac{1}{- 1} x^{- 1} + c \\ & = \frac{1}{6}x^2 +\frac{2 }{3 }x + \frac{1}{3 } . \frac{1}{x} + c \\ & = \frac{1}{6}x^2 +\frac{2 }{3 }x + \frac{1}{3 x} + c \end{align} $
h). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} , \, \sqrt{a} = x^\frac{1}{2} $ .
$ \begin{align} \int \frac{x+4}{\sqrt{x}} dx & = \int \frac{x+4}{\sqrt{x}} dx \\ & = \int \frac{x}{\sqrt{x}} + \frac{4}{\sqrt{x}} dx \\ & = \int \frac{x}{x^\frac{1}{2}} + \frac{4}{x^\frac{1}{2}} dx \\ & = \int x^{1-\frac{1}{2}} + 4x^{-\frac{1}{2}} dx \\ & = \int x^\frac{1}{2} + 4x^{-\frac{1}{2}} dx \\ & = \frac{1}{\frac{1}{2} + 1} x^{\frac{1}{2} + 1} + \frac{4}{-\frac{1}{2} + 1}x^{-\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2} } x^{\frac{3}{2} } + \frac{4}{\frac{1}{2} }x^{\frac{1}{2} } + c \\ & = \frac{2}{3} x^{\frac{3}{2} } + 4 . \frac{2}{1} \sqrt{x } + c \\ & = \frac{2}{3} x^{\frac{3}{2} } + 8 \sqrt{x } + c \\ & = \frac{2}{3} x \sqrt{x } + 8 \sqrt{x } + c \end{align} $
i). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} , \, \sqrt{a} = x^\frac{1}{2} $ .
$ \begin{align} \int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx & = \int (\sqrt{x} - \frac{1}{\sqrt{x}})(\sqrt{x} - \frac{1}{\sqrt{x}}) dx \\ & = \int (\sqrt{x})^2 - 2. \sqrt{x}. \frac{1}{\sqrt{x}} + \left( \frac{1}{\sqrt{x}} \right)^2 dx \\ & = \int x - 2 + \frac{1}{x} dx \\ & = \frac{1}{2}x^2 - 2x + \ln x + c \end{align} $
Pembuktian Rumus Integral Tak Tentu Fungsi Aljabar
$ y = x^n \rightarrow y^\prime = nx^{n-1} \, \, $ dan $ \, \, y = \ln x \rightarrow y^\prime = \frac{1}{x} $.
untuk materi lengkap turunannya, silahkan baca pada artikel :
"Turunan Fungsi Aljabar " dan "Turunan Fungsi Logaritma dan Eksponen".
*). Sesuai dengan pengertian integral, maka bentuk $ \int f(x) dx = F(x) + c \, $ benar jika berlaku turunan fungsi $ ( F(x) + c ) $ adalah $ f(x) $, artinya kita tinggal membuktikan $ \frac{d}{dx}(F(x) + c) = f(x) \, $ dimana bentuk $ \frac{d}{dx}(F(x) + c) \, $ adalah turunan dari $ ( F(x) + c ) $.
*). Pembuktian rumus pertama : $ \int x^n dx = \frac{1}{n+1}x^{n+1} + c $
$ \begin{align} \frac{d}{dx} \left( \frac{1}{n+1}x^{n+1} + c \right) & = (n+1) . \frac{1}{n+1}x^{(n+1) -1 } \\ & = x^n \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \frac{1}{n+1}x^{n+1} + c \right) = x^2 $ .
*). Pembuktian rumus kedua : $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
$ \begin{align} \frac{d}{dx} \left( \frac{a}{n+1}x^{n+1} + c \right) & = (n+1) . \frac{a}{n+1}x^{(n+1) -1 } \\ & = ax^n \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \frac{a}{n+1}x^{n+1} + c \right) = ax^2 $ .
*). Pembuktian rumus ketiga : $ \int \frac{1}{x} dx = \ln x + c $
$ \begin{align} \frac{d}{dx} \left( \ln x + c \right) & = \frac{1}{x} \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \ln x + c \right) = \frac{1}{x} $ .
*). Pembuktian rumus keempat : $ \int \frac{a}{x} dx = a\ln x + c $
$ \begin{align} \frac{d}{dx} \left( a\ln x + c \right) & = a . \frac{1}{x} = \frac{a}{x} \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \ln x + c \right) = \frac{a}{x} $ .