Cara Substitusi
Misalkan ada suku banyak
$ \, f(x) = a_nx^n + a_{n-1}x^{n-1}+ a_{n-2}x^{n-2} + ... + a_1x + a_0. \, $ Jika nilai $ x $ diganti $ k $, maka nilai suku banyak $ f(x) $ untuk $ x = k $ adalah
$ f(k) = a_nk^n + a_{n-1}k^{n-1}+ a_{n-2}k^{n-2} + ... + a_1k + a_0. $
$ \, f(x) = a_nx^n + a_{n-1}x^{n-1}+ a_{n-2}x^{n-2} + ... + a_1x + a_0. \, $ Jika nilai $ x $ diganti $ k $, maka nilai suku banyak $ f(x) $ untuk $ x = k $ adalah
$ f(k) = a_nk^n + a_{n-1}k^{n-1}+ a_{n-2}k^{n-2} + ... + a_1k + a_0. $
1). Hitunglah nilai suku banyak berikut ini untuk nilai x yang diberikan.
a). $ f(x) = x^3 - 2x^2 + 3x + 5 \, $ untuk $ x = 1 $.
b). $ g(x) = 2x^4 - 5x^3 + 1 \, $ untuk $ x = 2 $.
Penyelesaian :
a). $ f(x) = x^3 - 2x^2 + 3x + 5 \, $ untuk $ x = 1 $.
Substitusi langsung $ x = 1 \, $ ke suku banyak $ f(x) $ ,
$ \begin{align} f(x) & = x^3 - 2x^2 + 3x + 5 \\ f(1) & = 1^3 - 2.1^2 + 3.1 + 5 \\ & = 1 - 2 + 3 + 5 \\ & = 7 \end{align} $
Jadi, nilai suku banyak $ f(x) = x^3 - 2x^2 + 3x + 5 \, $ untuk $ x = 1 \, $ adalah 7.
b). $ g(x) = 2x^4 - 5x^3 + 1 \, $ untuk $ x = 2 $.
Substitusi langsung $ x = 2 \, $ ke suku banyak $ f(x) $ ,
$ \begin{align} g(x) & = 2x^4 - 5x^3 + 1 \\ g(2) & = 2.2^4 - 5.2^3 + 1 \\ & = 2.16 - 5.8 + 1 \\ & = 32 - 40 + 1 \\ & = -7 \end{align} $
Jadi, nilai suku banyak $ g(x) = 2x^4 - 5x^3 + 1 \, $ untuk $ x = 2 \, $ adalah $ -7 $.
Cara Skema Horner
Misalkan suku banyak $ f(x) = ax^3 + bx^2 + cx + d \, $ . Jika kita ingin menentukan nilai suku banyak
untuk $ x = k \, $, maka nilai suku banyaknya adalah $ f(k) = ak^3 + bk^2 + ck + d \, $ yang dapat dihitung dengan menggunakan skema Horner atau
disebut juga cara Sintetik.
Keterangan :
*). Baris 1 : diisi dengan koefisien dari setiap suku yang diurut dari pangkat tertinggi. Jika ada suku dari pangkat terurut yang tidak ada, maka diisi dengan nol.
*). Baris 1 dijumlahkan dengan baris 2 dihasilkan baris 3.
*). Baris 3 pada kolom pertama (paling kiri yaitu nilai $ a \, $) diperoleh dengan langsung memindahkan nilai kolom pertama baris 1.
*). nilai $ ak \, $ (baris 2) diperoleh dari perkalian $ a \, $ (kolom pertama baris 3) dengan $ k \, $.
*). nilai $ ak + b \, $ (baris 3) diperoleh dari penjumlahan baris 1 dan baris 2 kolom 2.
*). nilai $ ak^2 + bk \, $ (baris 2) diperoleh dari perkalian $ ak + b \, $ (kolom 2 baris 3) dengan $ k \, $.
*). nilai $ ak^2 + bk + c \, $ (baris 3) diperoleh dari penjumlahan baris 1 dan baris 2 kolom 3.
*). begitu seterusnya.
Keterangan :
*). Baris 1 : diisi dengan koefisien dari setiap suku yang diurut dari pangkat tertinggi. Jika ada suku dari pangkat terurut yang tidak ada, maka diisi dengan nol.
*). Baris 1 dijumlahkan dengan baris 2 dihasilkan baris 3.
*). Baris 3 pada kolom pertama (paling kiri yaitu nilai $ a \, $) diperoleh dengan langsung memindahkan nilai kolom pertama baris 1.
*). nilai $ ak \, $ (baris 2) diperoleh dari perkalian $ a \, $ (kolom pertama baris 3) dengan $ k \, $.
*). nilai $ ak + b \, $ (baris 3) diperoleh dari penjumlahan baris 1 dan baris 2 kolom 2.
*). nilai $ ak^2 + bk \, $ (baris 2) diperoleh dari perkalian $ ak + b \, $ (kolom 2 baris 3) dengan $ k \, $.
*). nilai $ ak^2 + bk + c \, $ (baris 3) diperoleh dari penjumlahan baris 1 dan baris 2 kolom 3.
*). begitu seterusnya.
2). Hitunglah nilai suku banyak untuk nilai x yang diberikan berikut ini.
a). $ f(x) = x^3 + 2x^2 + 3x - 4 \, $ untuk $ x = 5 $
b). $ f(x) = 2x^3 + 3x^2 + 9x + 12 \, $ untuk $ x = \frac{1}{2} $
Penyelesaian :
*). Kita akan menggunakan cara skema horner :
a). $ f(x) = x^3 + 2x^2 + 3x - 4 \, $ untuk $ x = 5 $
Jadi, nilai suku banyak $ f(x) \, $ untuk $ x = 5 \, $ adalah 186.
b). $ f(x) = 2x^3 + 3x^2 + 9x + 12 \, $ untuk $ x = \frac{1}{2} $
Jadi, nilai suku banyak $ f(x) \, $ untuk $ x = \frac{1}{2} \, $ adalah 16.
3). Hitunglah nilai suku banyak $ f(x) = 2x^3 + 7x^2 - 5 \, $ untuk $ x = 2 $.
Penyelesaian :
*). Kita menggunakan skema Horner.
Koefisien yang kita gunakan adalah :
Suku dengan variabel pangkat 3 : $ \, 2x^3 \, $ koefisiennya 2.
Suku dengan variabel pangkat 2 : $ \, 7x^2 \, $ koefisiennya 7.
Suku dengan variabel pangkat 1 : tidak ada sehingga koefisiennya 0.
Suku dengan variabel pangkat 0 (suku tetap) : $ -5 \, $ langsung kita tulis $ -5 $ .
Jadi, nilai suku banyak $ f(x) \, $ untuk $ x = 2 \, $ adalah 39.
Catatan :
Untuk perbandingan hasilnya, silahkan coba dengan cara substitusi langsung.