Tampilkan posting dengan label sistem persamaan. Tampilkan semua posting
Tampilkan posting dengan label sistem persamaan. Tampilkan semua posting

Senin, 28 September 2015

Sistem Persamaan dalam Soal Cerita


         Blog Koma - Dalam beberapa jenis soal sistem persamaan, ternyata tidak semua langsung dalam bentuk suatu sistem persamaan dalam variabel, akan tetapi dalam bentuk soal cerita. Kali ini kita akan membahas Sistem Persamaan dalam Soal Cerita. Namun, untuk memudahkan penyelesaian soal cerita, sebaiknya kita mempelajari dahulu beberapa materi yaitu sistem persamaan linear dua variabel, sistem persamaan tiga variabel, sistem persamaan linear dan kuadrat, serta sistem persamaan kuadrat dan kuadrat.
Penyelesaian Sistem Persamaan dalam Soal Cerita
       Langkah-langkah menyelesaikan Soal Cerita :
$\clubsuit \, $ Buat model matematikanya dengan cara memisalkan
$\clubsuit \, $ Selesaikan sistem persamaan yang terbentuk.

Contoh
1). Di sebuah toko Budi membayar Rp 11.000 untuk pembelian 2 buah buku dan 3 buah pensil. Di toko yang sama Iwan membayar Rp 6.000 untuk pembelian sebuah buku dan 2 buah pensil. Jika Wati membeli 3 buah buku dan 2 buah pensil, ia harus membayar?
Penyelesaian :
$\spadesuit $ Kita buat model matematikanya
Misalkan $ x = \, $ harga buku per buah, $ y = \, $ harga pensil per buah,
*). 2 buku dan 3 pensil seharga 11.000
$ 2x + 3y = 11000 $
*). 1 buku dan 2 pensil seharga 6.000
$ x + 2y = 6000 $
Sistem persamaannya : $ \left\{ \begin{array}{c} 2x + 3y = 11000 \\ x + 2y = 6000 \end{array} \right. $
$\spadesuit $ Eliminasi pers(i) dan pers(ii)
$\begin{array}{c|c|cc} 2x + 3y = 11000 & \text{kali 1} & 2x + 3y = 11000 & \\ x + 2y = 6000 & \text{kali 2} & 2x + 4y = 12000 & + \\ \hline & & -y = -1000 & \\ & & y = 1000 & \end{array} $
Pers(ii) : $ x + 2y = 6000 \rightarrow x + 2 \times 1000 = 6000 \rightarrow x = 4000 $
$\spadesuit $ Harga 3 buku dan 2 pensil
$ 3x + 2y = 3 \times 4000 + 2 \times 1000 = 12000 + 2000 = 14000 $
Jadi, harga 3 buku dan 2 pensil adalah Rp 12.000

2). Usia A sekarang sama dengan tiga kali usia B, sedangkan lima tahun yang lalu, dua kali usia A sama dengan 15 tahun lebih tua dari 7 kali usia B. Tentukan jumlah umur mereka!
Penyelesaian :
$\clubsuit $ Model matematikanya
Misalkan : Usia A sekarang $ x \, $ tahun dan usia B sekarang $ y \, $ tahun.
*). Sekarang, usia A tiga kali usia B
$ x = 3y $
*). Lima tahun yang lalu, usia A = $ x - 5 $ dan usia B = $ y - 5 $
Dua kali usia A sama dengan 15 tahun lebihnya dari 7 kali usia B
$ 2(x-5) = 7(y-5) + 15 \rightarrow 2x - 10 = 7y - 35 + 15 \rightarrow 2x - 7y = -10 $
Sistem persamaannya : $ \left\{ \begin{array}{c} x = 3y \\ 2x - 7y = -10 \end{array} \right. $
$\clubsuit $ Substitusi pers(i) ke pers(ii)
$ \begin{align} 2x - 7y & = -10 \\ 2(3y) - 7y & = -10 \\ 6y - 7y & = -10 \\ -y & = -10 \\ y & = 10 \end{align} $
Pers(i) : $ x = 3y = 3.10 = 30 $
artinya, usia A sekarang 10 tahun dan usia B sekarang 30 tahun.
Sehingga nilai $ x + y = 10 + 30 = 40 $
Jadi, jumlah umur mereka sekarang adalah 40 tahun.

3). Besarnya gaji dari empat orang pegawai A, B, C, dan D sebagai berikut. Gaji B sebesar 2 kali gaji A, gaji C lebih 100.000 dari gaji A, gaji D kurang 300.000 dari gaji B. Jika rata-rata gaji C dan D adalah 800.000, tentukan besarnya gaji B?
Penyelesaian :
$\spadesuit $ Model matematikanya
Sistem persamaannya :
$ \left\{ \begin{array}{c} B = 2A \\ C = A + 100.000 \\ D = B - 300.000 \\ \frac{C+D}{2} = 800.000 \end{array} \right. \, \, \, \, \, $ atau $\, \, \, \, \, \left\{ \begin{array}{c} \rightarrow A = \frac{1}{2}B \\ \rightarrow C = \frac{1}{2}B + 100.000 \\ D = B - 300.000 \\ \rightarrow C + D = 1.600.000 \end{array} \right. $
$\spadesuit $ Substitusi pers(ii) dan pers(iii) ke pers(iv)
$ \begin{align} C + D & = 1.600.000 \\ (\frac{1}{2}B + 100.000) + (B - 300.000) & = 1.600.000 \\ \frac{3}{2}B & = 1.800.000 \\ B & = \frac{2}{3} \times 1.800.000 \\ B & = 1.200.000 \end{align} $
Jadi, besarnya gaji B adalah Rp 1.200.000

4). Dua buah bilangan positif memiliki selisih 5 dan hasil kali 1. Tentukan jumlah kuadrat kedua bilangan tersebut?
Penyelesaian :
$\clubsuit $ Model matematikanya
Misalkan bilangannya $ a \, $ dan $ b \, $ dengan $ a > b $
Sistem persamaannya : $ \left\{ \begin{array}{c} a-b = 5 \\ ab = 1 \end{array} \right. $
$\clubsuit $ Kuadratkan pers(i)
$ \begin{align} a-b & = 5 \\ (a-b)^2 & = 5^2 \\ a^2 + b^2 - 2ab & = 25 \\ a^2 + b^2 & = 25 + 2ab \, \, \, \, \text{(substitusi } ab = 1) \\ a^2 + b^2 & = 25 + 2.(1) \\ a^2 + b^2 & = 25 + 2 \\ a^2 + b^2 & = 27 \end{align} $
Jadi, jumlah kuadrat kedua bilangan tersebut adalah 27.

         Nah, itu beberapa soal dan pembahasannya yang berkaitan dengan sistem persamaan dalam soal cerita. Semoga bermanfaat.

Sistem Persamaan Kuadrat dan Kuadrat (SPKK)


         Blog Koma - Sistem Persamaan Kuadrat dan Kuadrat (SPKK) adalah kumpulan persamaan kuadrat yang mempunyai solusi yang sama. Untuk menyelesaikan masalah sistem persamaan linear dan kuadrat, kita harus menguasai tentang nilai "Diskriminan". Nilai Diskriminan suatu fungsi kuadrat atau persamaan kuadrat dapat ditentukan dengan rumus $ D = b^2 - 4ac $

Bentuk Umum Sistem Persamaan Kuadrat dan Kuadrat (SPKK)
       Adapun bentuk umum sistem persamaan kuadrat dan kuadrat dengan variabel $ x \, $ dan $ y $
                     SPKK : $ \left\{ \begin{array}{c} y = px^2 + qx + r \\ y = ax^2 + bx + c \end{array} \right. $
Keterangan :
*). Variabelnya $ x \, $ dan $ y $
*). Koefisiennya $ a,b,p,q \in R $
*). Konstantanya $ r,c \in R $

Penyelesaian Sistem Persamaan Kuadrat dan Kuadrat (SPKK)
       Langkah-langkah menyelesaikan SPKK :
$\clubsuit \, $ Substitusikan salah satu persamaan ke persamaan lainnya sehingga terbentuk persamaan kuadrat.
$\clubsuit \, $ Tentukan akar-akar persamaan kuadrat (misal $ x_1 \, $ dan $ x_2 $ ) , kemudian substitusikan $ x_1 \, $ dan $ x_2 $ ke persamaan garis untuk memperoleh $ y_1 \, $ dan $ y_2 $ .
$\clubsuit \, $ Himpunan penyelesaian adalah $\{(x_1,y_1),(x_2,y_2)\}$ .

Jenis-jenis penyelesaian SPKK
       SPKK ini dapat dituliskan dalam bentuk (setelah disubstitusikan) :
                     $ (a-p)x^2 + (b-q)x + (c-r) = 0 $
dengan nilai diskriminan : $ D = b^2 - 4ac = (b-q)^2 - 4.(a-p).(c-r) $

SPKK memiliki beberapa kemungkinan penyelesaian berdasarkan:

$\spadesuit $ Jika dilihat dari nilai $D$, SPKK memiliki beberapa jenis penyelesaian:
i). Jika $ D > 0$ , maka SPKK memiliki dua penyelesaian. Secara geometris, kedua kurva berpotongan di dua titik.
ii). Jika $D = 0$, maka SPKK memiliki satu penyelesaian. Secara geometris, kedua kurva berpotongan di satu titik.
iii). Jika $D < 0$, maka SPKK tidak memiliki penyelesaian. Secara geometris, kedua kurva tidak berpotongan.

$ \spadesuit $ Jika dilihat dari koefisien dari setiap persamaan
SPKK : $ \left\{ \begin{array}{c} y = px^2 + qx + r \\ y = ax^2 + bx + c \end{array} \right. $
i). Jika $ a = p \, $ dan $ b \neq q , \, $ maka SPKK memiliki dua penyelesaian.
ii). Jika $ a = p , b = q, \, $ dan $ c \neq r , \, $ maka SPKK tidak mempunyai penyelesaian karena kedua kurva sejajar dan tidak berimpit.
iii). Jika $ a = p , b = q, \, $ dan $ c = r , \, $ maka SPKK mempunyai banyak penyelesaian (ada tak hingga penyelesaian) karena kedua kurva berimpit.

Contoh
1). Tentukan Himpunan penyelesaian dari sistem persamaan
$ \left\{ \begin{array}{c} y = 2x^2 - 4x + 3 \\ y = x^2 - 3x + 5 \end{array} \right. $
Penyelesaian :
$\spadesuit $ Substitusi pers(i) ke pers(ii)
$ \begin{align} y = 2x^2 - 4x + 3 \, \, \underbrace{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}_{\text{substitusi}} \, \, y & = x^2 - 3x + 5 \\ 2x^2 - 4x + 3 & = x^2 - 3x + 5 \\ x^2 - x - 2 & = 0 \\ (x+1)(x-2) & = 0 \\ x = -1 \vee x & = 2 \end{align} $
artinya $ x_1 = -1 \, $ dan $ x_2 = 2 $
$\spadesuit $ Substitusi nilai $ x_1 = -1 \, $ dan $ x_2 = 2 \, $ ke pers(ii)
$ x_1 = -1 \rightarrow y_1 = x^2 - 3x + 5 = (-1)^2 - 3(-1) + 5 = 9 $
$ x_2 = 2 \rightarrow y_2 = x^2 - 3x + 5 = 2^2 - 3.2 + 5 = 3 $
Jadi, HP nya adalah $ \left\{ (-1,9), \, (2,3) \right\} $

2). Nilai $ x \, $ yang memenuhi sistem persamaan
$ \left\{ \begin{array}{c} x^2 + y^2 = 25 \\ y = 4 \end{array} \right. $
adalah .... ?
Penyelesaian :
$\clubsuit $ Substitusi $ y = 4 \, $ ke pers(i)
$ 4x-y-6 = 0 \rightarrow y = 4x - 6 $
$ \begin{align} x^2 + y^2 & = 25 \\ x^2 + 4^2 & = 25 \\ x^2 + 16 & = 25 \\ x^2 & = 9 \\ x & = \pm \sqrt{9} \\ x & = \pm 3 \\ x_1 = -3 \vee x_2 & = 3 \end{align} $
Jadi, nilai $ x \, $ yang memenuhi adalah $ x = -3 \, $ atau $ x = 3 $

3). SPKK berikut memiliki satu penyelesaian,
$ \left\{ \begin{array}{c} 2ax^2 + x + 3 - y = 0 \\ y = ax^2 - 2x + a \end{array} \right. $
tentukan nilai $ 4a^2 + 2a - 1 ? $
Penyelesaian :
$\spadesuit $ Substitusikan pers(ii) ke pers(i)
$ \begin{align} 2ax^2 + x + 3 - y & = 0 \\ 2ax^2 + x + 3 - (ax^2 - 2x + a) & = 0 \\ ax^2 + 3x + (3-a) & = 0 \end{align} $
$\spadesuit $ Syarat mempunyai satu penyelesaian : $ D = 0 $
Dari bentuk : $ ax^2 + 3x + (3-a) = 0 $
$ \begin{align} D & = 0 \\ b^2 - 4ac & = 0 \\ 3^2 - 4.a.(3-a) & = 0 \\ 9 - 12a + 4a^2 & = 0 \\ (2a-3)^2 & = 0 \\ 2a - 3 & = 0 \\ a & = \frac{3}{2} \end{align} $
Sehingga nilai $ 4a^2 + 2a - 1 = 4 \left( \frac{3}{2} \right)^2 + 2. \frac{3}{2} - 1 = 4 . \frac{9}{4} + 3 - 1 = 11 $
Jadi, nilai $ 4a^2 + 2a - 1 = 11 $

4). Sistem persamaan
$ \left\{ \begin{array}{c} y = (a-1)x^2 + \left( \frac{b}{2} - 3 \right)x - 1 \\ y = 2x^2 - 2x + (3-2c) \end{array} \right. $
mempunyai banyak penyelesaian (tak hingga). Tentukan nilai $ a^2 + b^2 - c^2 $ ?
Penyelesaian :
$\clubsuit $ Syarat mempunyai banyak penyelesaian adalah besarnya koefisien setiap suku sama ($ a= p, \, b = q, \, c = r $)
Koefisien $ x^2 \, $ : $ \, a - 1 = 2 \rightarrow a = 3 $
Koefisien $ x \, $ : $ \, \frac{b}{2} - 3 = -2 \rightarrow b = 2 $
Konstanta : $ \, -1 = 3-2c \rightarrow c = 2 $
Jadi, nilai $ a^2 + b^2 - c^2 = 3^2 + 2^2 - 2^2 = 9 $

Sistem Persamaan Linear dan Kuadrat (SPLK)


         Blog Koma - Sistem Persamaan Linear dan Kuadrat (SPLK) adalah kumpulan persamaan linear dan persamaan kuadrat yang mempunyai solusi yang sama. Untuk menyelesaikan masalah sistem persamaan linear dan kuadrat, kita harus menguasai tentang "hubungan garis dan parabola" yang tentu ada kaitannya dengan "fungsi kuadrat" dan nilai "Diskriminan".

Bentuk Umum Sistem Persamaan Linear dan Kuadrat (SPLK)
       Adapun bentuk umum sistem persamaan linear dan kuadrat dengan variabel $ x \, $ dan $ y $
                     SPLK : $ \left\{ \begin{array}{c} y = px + q \\ y = ax^2 + bx + c \end{array} \right. $
Keterangan :
*). Variabelnya $ x \, $ dan $ y $
*). Koefisiennya $ a,b,p \in R $
*). Konstantanya $ q,c \in R $

Penyelesaian Sistem Persamaan Linear dan Kuadrat (SPLK)
       Langkah-langkah menyelesaikan SPLK :
$\clubsuit \, $ Substitusikan salah satu persamaan ke persamaan lainnya sehingga terbentuk persamaan kuadrat.
$\clubsuit \, $ Tentukan akar-akar persamaan kuadrat (misal $ x_1 \, $ dan $ x_2 $ ) , kemudian substitusikan $ x_1 \, $ dan $ x_2 $ ke persamaan garis untuk memperoleh $ y_1 \, $ dan $ y_2 $ .
$\clubsuit \, $ Himpunan penyelesaian adalah $\{(x_1,y_1),(x_2,y_2)\}$ .

Jenis-jenis penyelesaian SPLK
       SPLK ini dapat dituliskan dalam bentuk (setelah disubstitusikan) :
                     $ ax^2 + (b-p)x + (c-q) = 0 $
dengan nilai diskriminan : $ D = b^2 - 4ac = (b-p)^2 - 4a(c-q) $

Jika dilihat dari nilai $D$, SPLK memiliki beberapa jenis penyelesaian:
i). Jika $ D > 0$ , maka SPLK memiliki dua penyelesaian. Secara geometris, garis memotong kurva di dua titik.
ii). Jika $D = 0$, maka SPLK memiliki satu penyelesaian. Secara geometris, garis menyinggung kurva di satu titik.
iii). Jika $D < 0$, maka SPLK tidak memiliki penyelesaian. Secara geometris, garis tidak memotong kurva.

Contoh
1). Himpunan penyelesaian SPLK
$ \left\{ \begin{array}{c} y = -4x + 1 \\ y = x^2 - 3x - 1 \end{array} \right. $
adalah $\{(x_1,y_1),(x_2,y_2)\} \, $ , tentukan nilai $ x_1 + x_2 ?$
Penyelesaian :
$\spadesuit $ Substitusi pers(i) ke pers(ii)
$ \begin{align} y = -4x + 1 \, \, \underbrace{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}_{\text{substitusi}} \, \, y & = x^2 - 3x - 1 \\ -4x + 1 & = x^2 - 3x - 1 \\ x^2 + x - 2 & = 0 \\ (x+2)(x-1) & = 0 \\ x = -2 \vee x & = 1 \end{align} $
artinya $ x_1 = -2 \, $ dan $ x_2 = 1 $
Sehingga nilai $ x_1 + x_2 = -2 + 1 = -1 $
Jadi, nilai $ x_1 + x_2 = -1 $

2). Tentukan Himpunan penyelesaian (HP) dari SPLK:
$ \left\{ \begin{array}{c} 4x-y-6 = 0 \\ 2x^2-3x+y+3 = 0 \end{array} \right. $
Penyelesaian :
$\clubsuit $ Substitusi pers(i) ke pers(ii)
$ 4x-y-6 = 0 \rightarrow y = 4x - 6 $
$ \begin{align} y = 4x - 6 \, \, \underbrace{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}_{\text{substitusi}} \, \, 2x^2-3x+y+3 & = 0 \\ 2x^2-3x+(4x-6)+3 & = 0 \\ 2x^2 + x - 3 & = 0 \\ (2x+3)(x-1) & = 0 \\ x_1 = -\frac{3}{2} \vee x_2 & = 1 \end{align} $
$\clubsuit $ Substitusikan nilai $ x_1 \, $ dan $ x_2 \, $ ke persamaan garis ($ y= 4x -6$) untuk memperoleh $ y_1 \, $ dan $ y_2 $ :
$ x_1 = -\frac{3}{2} \rightarrow y_1 = 4x - 6 = 4 \left(-\frac{3}{2} \right) - 6 = -6 -6 = -12 $
$ x_2 = 1 \rightarrow y_2 = 4x - 6 = 4 (1) - 6 = 4 -6 = -2 $
Jadi, HP nya adalah $ \left\{ \left(-\frac{3}{2}, -12 \right), \, (1, -2) \right\} $

3). Salah satu nilai $x$ yang memenuhi Sistem Persamaan berikut:
$ \left\{ \begin{array}{c} 4x^2-4xy+y^2 = 4 \\ 3x + y = 8 \end{array} \right. $
adalah .... ?
Penyelesaian :
$\spadesuit $ Faktorkan pers(i) :
$ \begin{align} 4x^2-4xy+y^2 & = 4 \\ (2x -y)(2x-y) & = 4 \\ (2x-y)^2 & = 4 \\ 2x - y & = \pm \sqrt{4} = \pm 2 \\ 2x - y & = \pm 2 \\ 2x - y = 2 \vee 2x - y & = -2 \end{align} $
$\spadesuit $ Eliminasi persamaan baru yang diperoleh dengan garis ($3x + y = 8$)
$\begin{array}{cc} 2x - y = 2 & \\ 3x + y = 8 & + \\ \hline 5x = 10 & \\ x = 2 & \end{array} \, \, \, \, \, \, \, \, \, \, \, \, $ $ \begin{array}{cc} 2x - y = -2 & \\ 3x + y = 8 & + \\ \hline 5x = 6 & \\ x = \frac{6}{5} & \end{array} $
Jadi, nilai $ x \, $ yang memenuhi adalah $ x = 2 \, $ atau $ x = \frac{6}{5} $

4). Jika $(a,b)$ memenuhi SP berikut:
$ \left\{ \begin{array}{c} 5x^2+3y^2 = 24 \\ \sqrt{5}x - \sqrt{3} y = 3 \end{array} \right. $
maka nilai $ ab =... ?$
Penyelesaian :
$\clubsuit $ Kuadratkan pers(ii)
$ \begin{align} \sqrt{5}x - \sqrt{3} y & = 3 \\ (\sqrt{5}x - \sqrt{3} y)^2 & = 3^2 \\ 5x^2 + 3y^2 - 2.\sqrt{5}.\sqrt{3} xy & = 9 \\ 5x^2 + 3y^2 - 2\sqrt{15} xy & = 9 \end{align} $
$\clubsuit $ Eliminasi pers(i) dan pers(ii) yang baru
$ \begin{array}{cc} 5x^2+3y^2 = 24 & \\ 5x^2 + 3y^2 - 2\sqrt{15} xy & = 9 & - \\ \hline 2\sqrt{15} xy = 15 & \\ xy = \frac{15}{2\sqrt{15}} & \\ xy = \frac{1}{2} \sqrt{15} & \end{array} $
Jadi, nilai $ ab = \frac{1}{2} \sqrt{15} $

5). Sistem Persamaan berikut:
$ \left\{ \begin{array}{c} x - y = p \\ x^2 + 3x + y = -5 \end{array} \right. $
mempunyai tepat satu solusi, tentukan nilai $ x + y ? $
Penyelesaian :
$\spadesuit $ Eliminasi persamaan (i) dan (ii):
$\begin{array}{cc} x - y = p & \\ x^2 + 3x + y = -5 & + \\ \hline x^2 + 4x = p - 5 & \\ x^2+ 4x + (5-p) = 0 & \end{array} $
$\spadesuit $ SPLK mempunyai satu penyelesaian, syaratnya $D = 0$:
$ D = 0 \rightarrow b^2 - 4ac = 0 \rightarrow 4^2 - 4.1.(5-p) = 0 \rightarrow p = 1 $
$\spadesuit $ Substitusi $p = 1$ ke persamaan kuadrat:
$ \begin{align} x^2+ 4x + (5-p) & = 0 \\ x^2+ 4x + (5-1) & = 0 \\ x^2+ 4x + 4 & = 0 \\ (x + 2)^2 & = 0 \\ x+2 & = 0 \\ x & = -2 \end{align} $
$\spadesuit $ Substitusi $ x = -2 $ ke pers(ii)
$ x^2 + 3x + y = -5 \rightarrow (-2)^2 + 3.(-2) + y = -5 \rightarrow y = -3 $
Jadi, nilai $ x + y = -2 + (-3) = -5 $

Sabtu, 26 September 2015

Sistem Persamaan Linear Tiga Variabel (SPLTV)


         Blog Koma - Sistem Persamaan Linear Tiga Variabel (SPLTV) adalah kumpulan persamaan linear yang mempunyai solusi (atau tidak mempunyai solusi) yang sama untuk semua persamaan yang terdiri dari tiga variabel. Untuk menyelesaikan sistem persamaan linear tiga variabel ini, ada beberapa cara yaitu metode eliminasi, metode substitusi, dan metode gabungan (eliminasi dan substitusi). Namun kali ini kita hanya membahas metode gabungan saja, karena akan lebih efektif dalam penyelesaiannya. Sebelumnya juga telah kita bahas tentang sistem persamaan linear dua variabel, silahkan baca artikelnya "sistem persamaan linear dua variabel".

Bentuk Umum Sistem Persamaan Linear Tiga Variabel (SPLTV)
       Adapun bentuk umum sistem persamaan linear tiga variabel dengan variabel $ x , \, y, \, $ dan $ z $
                     SPLTV : $ \left\{ \begin{array}{c} a_1x+b_1y+c_1z = d_1 \\ a_2x+b_2y+c_2z = d_2 \\ a_3x+b_3y+c_3z = d_3 \end{array} \right. $
Keterangan :
*). Variabelnya $ x, \, y, \, $ dan $ y $
*). Koefisiennya $ a_1,b_1,c_1,a_2,b_2,c_2,a_3,b_3,c_3 \in R $
*). Konstantanya $ d_1,d_2,d_3 \in R $

Penyelesaian Sistem Persamaan Linear Tiga Variabel (SPLTV)
       Cara terbaik menyelesaikan SPLTV dengan metode Eliminasi-Substitusi (gabungan).
       Langkah-langkah menyelesaikan SPLTV dengan metode gabungan:
$\clubsuit \, $ Eliminasi variabel pertama dengan memasang-masangkan dua persamaan dari ketiga persamaan sehingga diperoleh SPL baru yang sederhana.
$\clubsuit \, $ Dari SPL baru, eliminasi lagi sehingga diperoleh nilai dari salah satu variabel yang ada.
$\clubsuit \, $ Dari nilai variabel yang telah ada, substitusikan ke persamaan sebelumnya untuk memperoleh nilai variabel yang lainnya.

Contoh
1). Diketahui sistem persamaan linear tiga variabel,
$ \left\{ \begin{array}{c} x - y + 2z = 4 \\ 2x + 2y - z = 2 \\ 3x + y + 2z = 8 \end{array} \right. $
Mempunyai penyelesaian $\{(x,y,z)\} \, $ , maka nilai $ x + y - z = ... ?$
Penyelesaian :
$\spadesuit $ Eliminasi variabel $ y \, $ dari :
*).pers(i) dan pers(ii) :
$\begin{array}{c|c|cc} x - y + 2z = 4 & \text{kali 2} & 2x - 2y + 4z = 8 & \\ 2x + 2y - z = 2 & \text{kali 1} & 2x + 2y - z = 2 & + \\ \hline & & 4x + 3z = 10 & \end{array} $
Hasilnya kita sebut sebagai pers(iv) : $ 4x + 3z = 10 $
*). pers(i) dan pers(iii) :
$\begin{array}{cc} x - y + 2z = 4 & \\ 3x + y + 2z = 8 & + \\ \hline 4x + 4z = 12 & \end{array} $
Hasilnya kita sebut sebagai pers(v) : $ 4x + 4z = 12 $
Tebentuklah SPL baru : $ \left\{ \begin{array}{c} 4x + 3z = 10 \\ 4x + 4z = 12 \end{array} \right. $
$\spadesuit $ Eliminasi variabel $ x \, $ dari pers(iv) dan pers(v)
$\begin{array}{cc} 4x + 3z = 10 & \\ 4x + 4z = 12 & - \\ \hline -z = -2 & \\ z = 2 & \end{array} $
$\spadesuit $ Substitusi $ z = 2 \, $ ke pers(iv)
$ 4x + 3z = 10 \rightarrow 4x + 3.2 = 10 \rightarrow 4x = 4 \rightarrow x = 1 $
$\spadesuit $ Substitusi $ z = 2 \, $ dan $ x = 1 \, $ ke pers(i)
$ x - y + 2z = 4 \rightarrow 1 - y + 2.2 = 4 \rightarrow y = 1 $
Sehingga nilai $ x + y - z = 1 + 1 - 2 = 0 $
Jadi, nilai $ x + y - z = 0 . \heartsuit $

2). Jika $(a, b, c)$ merupakan himpunan penyelesaian dari sistem persamaan $ x + 2y + 3z = 4, \, 2x + y + z = 6, \, $ dan $ 3x + 3y + 2z = 8, \, $ maka nilai $ a + b + c = ... ?$
Penyelesaian :
$\clubsuit $ Terkadang soal-soal SPL tidak harus dicari semua nilai variabelnya, bisa langsung dijumlah, dikurangkan, atau dikalikan dari persamaan yang ada sehingga hasilnya sama dengan pertanyaan yang diminta.
$\begin{array}{cc} x + 2y + 3z = 4 & \\ 2x + y + z = 6 & \\ 3x + 3y + 2z = 8 & + \\ \hline 6x + 6y + 6z = 18 & \\ x + y + z = 3 & \end{array} $
Jadi, nilai $ a + b + c = 3 . \heartsuit $

3). Jika $(x,y,z)$ memenuhi sistem persamaan (SP)
$ \frac{xy}{x+y} = \frac{1}{5}, \, \frac{xz}{x+z} = \frac{1}{3}, \, $ dan $ \frac{yz}{y+z} = \frac{1}{4}, \, $
maka nilai $ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = ...? $
Penyelesaian :
$\spadesuit $ Sederhanakan semua bentuk persamaan yang ada dengan cara dibalik.
$ \frac{xy}{x+y} = \frac{1}{5} \rightarrow \frac{x+y}{xy} = \frac{5}{1} \rightarrow \frac{x}{xy} + \frac{y}{xy} = 5 \rightarrow \frac{1}{y} + \frac{1}{x} = 5 $
$ \frac{xz}{x+z} = \frac{1}{3} \rightarrow \frac{x+z}{xz} = \frac{3}{1} \rightarrow \frac{x}{xz} + \frac{z}{xz} = 3 \rightarrow \frac{1}{z} + \frac{1}{x} = 3 $
$ \frac{yz}{y+z} = \frac{1}{4} \rightarrow \frac{y+z}{yz} = \frac{4}{1} \rightarrow \frac{y}{yz} + \frac{z}{yz} = 4 \rightarrow \frac{1}{z} + \frac{1}{y} = 4 $
$\spadesuit $ Misalkan $ p = \frac{1}{x}, \, q = \frac{1}{y}, \, $ dan $ r = \frac{1}{z} $
Sistem menjadi :
$ \frac{1}{y} + \frac{1}{x} = 5 \rightarrow p + q = 5 \rightarrow p = 5 - q $
$ \frac{1}{z} + \frac{1}{x} = 3 \rightarrow p + r = 3 $
$ \frac{1}{z} + \frac{1}{y} = 4 \rightarrow q + r = 4 \rightarrow r = 4 - q $
$\spadesuit $ Substitusi $ p = 5 - q \, $ dan $ r = 4 - q \, $ ke pers(ii)
$ p + r = 3 \rightarrow (5-q) + (4-q) = 3 \rightarrow 9-2q = 3 \rightarrow q = 3 $
$ q = 3 \rightarrow p = 5 - q = 5 - 3 = 2 $
$ q = 3 \rightarrow r = 4 - q = 4 - 3 = 1 $
Sehingga nilai $ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = p + q + r = 2 + 3 + 1 = 6 $
Jadi, nilai $ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 6 . \heartsuit $

Cara II : Sistem baru yang terbentuk langsung dijumlahkan.
$\begin{array}{cc} \frac{1}{y} + \frac{1}{x} = 5 & \\ \frac{1}{z} + \frac{1}{x} = 3 & \\ \frac{1}{z} + \frac{1}{y} = 4 & + \\ \hline 2\left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) = 12 & \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 6 & \end{array} $
Jadi, nilai $ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 6 . \heartsuit $

4). Diketahui SPLTV : $ \left\{ \begin{array}{cc} 2x + y + 2z = 5 & ...\text{(i)} \\ x + 2y + z = 4 & ...\text{(ii)} \\ x + y + z = 3 & ...\text{(iii)} \end{array} \right. $
mempunyai penyelesaian $ \{(a,b,c)\} \, $ , hubungan antara $ a \, $ dan $ c $ adalah ... ?
Penyelesaian :
$\clubsuit $ Eliminasi variabel $ y $ dari pers(i) dan pers(iii)
$\begin{array}{cc} 2x + y + 2z = 5 & \\ x + y + z = 3 & - \\ \hline x + z = 2 & \end{array} $
artinya $ x + y = 2 \rightarrow a + c = 2 $
Jadi, hubungan antara $ a \, $ dan $ c \, $ adalah $ a + c = 2 . \heartsuit $
Catatan: untuk memperoleh hubungan $ a \, $ dan $ c \, $ , cukup kita eliminasi variabel $ y $ dari persamaan yang ada.

5). Agar SPLTV : $ \left\{ \begin{array}{cc} 2ax + y + az = 10 & ...\text{(i)} \\ ay + z = 3 & ...\text{(ii)} \\ x + ay + az = 8 & ...\text{(iii)} \\ x + y + z = 7 & ...\text{(iv)} \end{array} \right. $
mempunyai solusi, tentukan nilai $ a^2 + 2a + 3 $
Penyelesaian :
$\spadesuit $ Jumlahkan pers(i), (ii), dan (iii) :
$\begin{array}{cc} 2ax + y + az = 10 & \\ ay + z = 3 & \\ x + ay + az = 8 & + \\ \hline (2a+1)x + (2a+1)y+ (2a+1)z = 21 & \\ x + y + z = \frac{21}{2a+1} & \end{array} $
terbentuklah pers(v) : $ x + y + z = \frac{21}{2a+1} $
$\spadesuit $ Bentuk pers(iv) dan pers(v) harus sama, diperoleh
$ \left. \begin{array}{c} x + y + z = 7 \\ x + y + z = \frac{21}{2a+1} \end{array} \right\} \, $ Sama
Sehingga : $ \frac{21}{2a+1} = 7 \rightarrow 2a + 1 = 3 \rightarrow a = 1 $
Nilai $ a^2 + 2a + 3 = 1^2 + 2.1 + 3 = 1 + 2 + 3 = 6 $
Jadi, nilai $ a^2 + 2a + 3 = 6. \heartsuit $

Jumat, 25 September 2015

Sistem Persamaan Linear Dua Variabel (SPLDV)


         Blog Koma - Sistem Persamaan Linear (SPL) adalah kumpulan persamaan linear yang mempunyai solusi (atau tidak mempunyai solusi) yang sama untuk semua persamaan. Sistem Persamaan yang akan kita bahas adalah sistem persamaan linear dua variabel, sistem persamaan linear tiga variabel, sistem persamaan linear dan kuadrat, dan sistem persamaan kuadrat dan kuadrat. Untuk artikel kali ini kita akan bahas tentang sistem persamaan linear dua variabel (SPLDV).

Bentuk Umum Sistem Persamaan Linear Dua Variabel (SPLDV)
       Adapun bentuk umum sistem persamaan linear dua variabel dengan variabel $ x \, $ dan $ y $
                     SPLDV : $ \left\{ \begin{array}{c} a_1x+b_1y = c_1 \\ a_2x+b_2y = c_2 \end{array} \right. $
Keterangan :
*). Variabelnya $ x $ dan $ y $
*). Koefisiennya $ a_1,b_1,a_2,b_2 \in R $
*). Konstantanya $ c_1,c_2 \in R $

Penyelesaian Sistem Persamaan Linear Dua Variabel (SPLDV)
       Penyelesaian SPLDV dapat dilakukan dengan beberapa cara yaitu :
i). Metode grafik
ii). Metode Substitusi
iii). Metode Eliminasi
iv). Metode Eliminasi-Substitusi (Gabungan)

i). Metode grafik
       Solusi atau penyelesaian SPLDV metode grafik adalah titik potong kedua grafik. Metode grafik yang dimaksud adalah kita harus menggambar grafiknya (berupa garis lurus). Untuk materi menggambar garis lurus, silahkan baca artikel "Persamaan Garis Lurus dan Grafiknya"
Langkah-langkah:
*). Gambar grafik kedua persamaan
*). Ada tiga kemungkinan gambar grafiknya:
1). Sejajar
       Garis $k$ dan $m$ sejajar dan tidak berpotongan, dakam keadaan ini SPLDV tidak mempunyai penyelesaian. SPLDV tidak mempunyai penyelesaian dengan syarat: $ \frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2} $ .

2). Berimpit
       Garis $k$ dan $m$ berimpit (menyatu), dakam keadaan ini SPLDV mempunyai penyelesaian banyak (tak hingga atau tak trivial) karena setiap titik pada garis memenuhi kedua persamaan. Hal ini terjadi dengan syarat: $ \frac{a_1}{a_2}=\frac{b_1}{b_2} = \frac{c_1}{c_2} $ .

3). Berpotongan
       Garis $k$ dan $m$ berpotongan di titik A, dalam keadaan ini SPLDV mempunyai tepat satu penyelesaian (trivial) atau solusi yaitu titik A. Hal ini terjadi dengan syarat: $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $ .
Contoh
1). Tentukan Penyelesaian SPLDV berikut :
$ \left\{ \begin{array}{c} x + y = 3 \\ 3x + 3y = 6 \end{array} \right. $
Penyelesaian :
garis $ k : \, x + y = 3 \rightarrow $ melalui titik (0,3) dan (3,0)
garis $ m : \, 3x + 3y = 6 \rightarrow $ melalui titik (0,2) dan (2,0)
Kedua garis sejajar dan tidak berpotongan, sehingga tidak ada solusi yang memenuhi SPLDV tersebut.

2). Tentukan Penyelesaian SPLDV berikut :
$ \left\{ \begin{array}{c} 2x - y = 3 \\ 6x - 3y = 9 \end{array} \right. $
Penyelesaian :
garis $ k : \, 2x - y = 3 \rightarrow $ melalui titik (0,-3) dan ($\frac{3}{2}$,0)
garis $ m : \, 6x - 3y = 9 \rightarrow $ melalui titik (0,-3) dan ($\frac{3}{2}$,0)

Garis $k$ dan $m$ berimpit, sehingga SPLDV tersebut mempunyai banyak penyelesaian (tak hingga).

3). Jika ($a,b$) memenuhi SPLDV berikut, tentukan nilai $ a + b $ ?
$ \left\{ \begin{array}{c} x - 2y = 6 \\ 3x + 2y = 6 \end{array} \right. $
Penyelesaian :
garis $ k : \, x - 2y = 6 \rightarrow $ melalui titik (0,-3) dan (6,0)
garis $ m : \, 3x + 2y = 6 \rightarrow $ melalui titik (0,3) dan (2,0)
Jadi solusinya titik A (3, -1.5), sehingga $a=3$ dan $b=-1,5$.
Sehingga nilai $ a + b = 3 + (-1,5) = 1,5 = 1\frac{1}{2} $
Jadi, nilai $ a + b = 1\frac{1}{2} $

4). Diketahui SPLDV berikut:
$ \left\{ \begin{array}{c} (a-1)x + y = 1 \\ 6x + 3y = 7 \end{array} \right. $
Agar SPLDV mempunyai tepat satu solusi, tentukan nilai $a$?
Penyelesaian :
Syarat mempunyai tepat satu solusi: $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $
Sehingga $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \rightarrow \frac{a-1}{6} \neq \frac{1}{3} \rightarrow 3(a-1) \neq 6 \rightarrow a \neq 3 $
Jadi agar mempunyai tepat satu solusi, nilai $a$ tidak boleh 3 ($a \neq 3$).

5). Diketahui SPLDV berikut:
$ \left\{ \begin{array}{c} (a-1)x + 3y = 0 \\ 2x + (a-1)y = 7 \end{array} \right. $
Agar solusi SPLDV di atas tidak hanya (0,0), tentukan nilai $ a^2 - 2a + 10 $ ?
Penyelesaian :
Solusi tidak hanya (0,0) , artinya banyak solusi.
Syarat banyak solusi: $ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $
Sehingga $ \frac{a_1}{a_2} = \frac{b_1}{b_2} \rightarrow \frac{a-1}{2} = \frac{3}{a-1} \rightarrow (a-1)^2 = 6 \rightarrow a^2 - 2a + 1 = 6 \rightarrow a^2 - 2a = 5 $
Nilai $ a^2 - 2a + 10 = (a^2 - 2a ) + 10 = 5 + 10 = 15 $
Jadi, nilai $ a^2 - 2a + 10 = 15. $

ii). Metode Substitusi
       Langkah-langkah penyelesaian metode substitusi:
*). Nyatakan salah satu persamaan dalam bentuk $ y = ax + b \, $ atau $ x = cy + d $ .
*). Substitusikan $y$ atau $x$ pada langkah pertama ke persamaan yang lain.
*). Selesaikan peersamaan untuk memperoleh $ x = x_1 \, $ atau $ y = y_1 $ .
*). Substitusikan nilai $ x = x_1 \, $ atau $ y = y_1 \, $ ke salah satu persamaan untuk memperoleh nilai $ x = x_1 \, $ atau $ y = y_1 $ .
*). Penyelesaian adalah $(x_1,y_1)$ .

Contoh
1). Tentukan penyelesaian dari SPLDV berikut:
$ \left\{ \begin{array}{c} x - y = 3 \\ 2x + 3y = 1 \end{array} \right. $
Penyelesaian :
*). Ubahlah persamann (i), $ x - y = 3 \rightarrow x = y + 3 $
*). Substitusikan $ x = y + 3 $ ke persamaan (ii) ,
$ 2x + 3y = 1 \rightarrow 2(y+3) + 3y = 1 \rightarrow 5y + 6 = 1 \rightarrow y = -1 $
*). Substitusikan $y = -1 $ ke persamaan (i)
$ x - y = 3 \rightarrow x - (-1) = 3 \rightarrow x = 2 $
Jadi solusinya adalah (2, -1).

2). Diketahui SPLDV:
$ \left\{ \begin{array}{c} 2x + y = 4 \\ x + y = k \\ 3x + 2y = 7 \end{array} \right. $
Mempunyai penyelesaian, tentukan nilai $k$ ?
Penyelesaian :
*). SPLDV mempunyai penyelesaian, artinya nilai ($x , y$) memenuhi ketiga persamaan. Untuk memperoleh nilai ($x , y$), cukup menyelesaikan persamaan (i) dan (iii), kemudian substitusikan nilai ($x , y$) ke persamaan (ii) untuk memperoleh nilai $k$.
*). Ubah persamaan (i), $ 2x + y = 4 \rightarrow y = 4 - 2x $
*). Substitusikan $ y = 4 - 2x $ ke persamaan (iii),
$ 3x + 2y = 7 \rightarrow 3x + 2(4-2x) = 7 \rightarrow 3x + 8 - 4x = 7 \rightarrow x = 1 $
*). Substitusikan $x = 1$ ke persamaan (i),
$ 2x + y = 4 \rightarrow 2 . 1 + y = 4 \rightarrow y = 4- 2 = 2 $
*). Penyelesaian SPLDV adalah (1, 2), solusi ini juga terpenuhi untuk persamaan (ii):
$ x + y = k \rightarrow 1 + 2 = k \rightarrow k = 3 $
Jadi, nilai $ k = 3 $

iii). Metode Eliminasi
       Langkah-langkah penyelesaian metode eliminasi:
*). Samakan koefisien $x$ atau $y$ dengan cara mengalikan konstanta yang sesuai.
*). Jumlahkan (jika tanda kedua koefisien berbeda) atau kurangkan (jika tanda kedua koefisien sama) sehingga diperoleh $ x = x_1 \, $ atau $ y = y_1 $ .
*). Lakukan hal yang sama untuk variabel yang lainnya.
*). Penyelesaian adalah $(x_1,y_1)$ .

Contoh
1). Tentukan penyelesaian dari SPLDV berikut:
$ \left\{ \begin{array}{c} x + 2y = 1 \\ 3x - y = 10 \end{array} \right. $
Penyelesaian :
*). Eliminasi variabel $ x $
$\begin{array}{c|c|cc} x + 2y = 1 & \text{kali 3} & 3x + 6y = 3 & \\ 3x - y = 10 & \text{kali 1} & 3x - y = 10 & - \\ \hline & & 7y = -3 & \\ & & y = -1 & \end{array} $
*). Eliminasi variabel $ y $
$\begin{array}{c|c|cc} x + 2y = 1 & \text{kali 1} & x + 2y = 1 & \\ 3x - y = 10 & \text{kali 2} & 6x - 2y = 20 & + \\ \hline & & 7x = 21 & \\ & & x = 3 & \end{array} $
Jadi, solusinya adalah (3, -1).

2). Sistem persmaan linear:
$ \left\{ \begin{array}{c} 2x - y = 4 \\ x - 2y = -1 \\ 2ax + 3by = 12 \end{array} \right. $
Mempunyai penyelesaian jika nilai $a + b$ sama dengan ...?
Penyelesaian :
Selesaikan pers(i) dan pers(ii)
*). Eliminasi variabel $ x $
$\begin{array}{c|c|cc} 2x - y = 4 & \text{kali 1} & 2x - y = 4 & \\ x - 2y = -1 & \text{kali 2} & 2x - 4y = -2 & - \\ \hline & & 3y = 6 & \\ & & y = 2 & \end{array} $
*). Eliminasi variabel $ y $
$\begin{array}{c|c|cc} 2x - y = 4 & \text{kali 2} & 4x -2 y = 8 & \\ x - 2y = -1 & \text{kali 1} & x - 2y = -1 & - \\ \hline & & 3x = 9 & \\ & & x = 3 & \end{array} $
*). Titik (3,2) adalah solusi dari persamaan (i) dan (ii) yang juga sebagai solusi persamaan (iii), substitusikan (3,2) ke persamaan (iii):
$ 2ax + 3by = 12 \rightarrow 2a.3 + 3b.2 = 12 \rightarrow 6a + 6b = 12 \rightarrow a + b = 2 $
Jadi, nilai $ a + b = 2 $

iv). Metode Eliminasi-Substitusi (Gabungan)
       Metode ini merupakan cara terbaik untuk menyelesaikan SPLDV dan yang paling sering digunakan.
       Langkah-langkah penyelesaian metode ini:
*). Eliminasi salah satu variabel (misalnya $x$) untuk memperoleh nilai variabel pertama (nilai $y$).
*). Substitusikan nilai variabel pertama yang diperoleh untuk menentukan nilai variabel lainnya.

Contoh
1). Tentukan penyelesaian dari SPLDV berikut:
$ \left\{ \begin{array}{c} 2x + 3y = 5 \\ 3x - 2y = 1 \end{array} \right. $
Penyelesaian :
*). Eliminasi variabel $ y $
$\begin{array}{c|c|cc} 2x + 3y = 5 & \text{kali 2} & 4x + 6y = 10 & \\ 3x - 2y = 1 & \text{kali 3} & 9x - 6y = 3 & + \\ \hline & & 13x = 13 & \\ & & x = 1 & \end{array} $
*). Substitusikan $x = 1$ ke persamaan (ii) : $ 3x - 2y = 1 \rightarrow 3. 1 - 2y = 1 \rightarrow 3 - 2y = 1 \rightarrow y = 1 $
Jadi penyelesaiannya adalah (1,1).

2). Jika $a$ dan $b$ memenuhi $ \frac{3x+y+2}{x-y} = 2 \, $ dan $ \frac{x + 2y + 10 }{4x + y} = 3 $ , maka $a - b$ = ...?
Penyelesaian :
*). Sederhanakan kedua bentuk persamaan di atas:
pers(i): $ \frac{3x+y+2}{x-y} = 2 \rightarrow 3x+y+2 = 2x - 2y \rightarrow x + 3y = -2 $
pers(ii): $ \frac{x + 2y + 10 }{4x + y} = 3 \rightarrow x+2y+10=12x+3y \rightarrow 11x + y = 10 $
*). SPLDV menjadi :
$ \left\{ \begin{array}{c} x + 3y = -2 \\ 11x + y = 10 \end{array} \right. $
Penyelesaian :
*). Eliminasi variabel $ y $
$\begin{array}{c|c|cc} x + 3y = -2 & \text{kali 1} & x + 3y = -2 & \\ 11x + y = 10 & \text{kali 3} & 33x + 3y = 30 & - \\ \hline & & -32x = -32 & \\ & & x = 1 & \end{array} $
*). Substitusikan $x = 1$ ke persamaan (i):
$ x + 3y = -2 \rightarrow 1 + 3y = -2 \rightarrow y = -1 $
*). Karena solusinya $x = 1$ dan $y = -1$ , maka $a = 1$ dan $b = -1$
sehingga nilai $ a - b = 1 - (-1) = 2 $
Jadi, nilai $ a - b = 2 $ .

3). Sistem persamaan (SP) berikut:
$ \left\{ \begin{array}{c} \frac{2}{x} + \frac{1}{y} = -1 \\ \frac{1}{x} + \frac{3}{y} = 7 \end{array} \right. $
mempunyai penyelesaian ($x_0,y_0$) , tentukan nilai $ 2x_0 + 6y_0 $ ?
Penyelesaian :
*). Misalkan : $ p = \frac{1}{x} \, $ dan $ q = \frac{1}{y} $ , SP menjadi:
$ \left\{ \begin{array}{c} 2.\frac{1}{x} + \frac{1}{y} = -1 \\ \frac{1}{x} + 3.\frac{1}{y} = 7 \end{array} \right. \, \, \Rightarrow \, \, \left\{ \begin{array}{c} 2p + q = -1 \\ p + 3q = 7 \end{array} \right. $
*). Eliminasi variabel $ p $
$\begin{array}{c|c|cc} 2p + q = -1 & \text{kali 1} & 2p + q = -1 & \\ p + 3q = 7 & \text{kali 2} & 2p + 6q = 14 & - \\ \hline & & -5q = -15 & \\ & & q = 3 & \end{array} $
*). Substitusikan $q = 3$ ke persamaan (i) :
$ 2p + q = -1 \rightarrow 2p + 3 = -1 \rightarrow p = -2 $
*). Dari nilai $p = \frac{1}{x}$ dan $q=\frac{1}{y}$, diperoleh nilai $x$ dan $y$ berikut:
$ p = -2 \rightarrow \frac{1}{x} = -2 \rightarrow x = -\frac{1}{2} \rightarrow x_0 = -\frac{1}{2} $
$ q = 3 \rightarrow \frac{1}{y} = 3 \rightarrow y = \frac{1}{3} \rightarrow y_0 = \frac{1}{3} $
Sehingga nilai $ 2x_0 + 6y_0 = 2.(-\frac{1}{2}) + 6. \frac{1}{3} = -1 +2 = 1 $
Jadi, nilai $ 2x_0 + 6y_0 = 1 $