Tampilkan posting dengan label persamaan garis lurus. Tampilkan semua posting
Tampilkan posting dengan label persamaan garis lurus. Tampilkan semua posting

Jumat, 25 September 2015

Hubungan Dua Garis Lurus


         Blog Koma - Sebelumnya telah dibahas tentang "Persamaan Garis Lurus dan Grafiknya" serta "Gradien dan Menyusun Persamaan Garis Lurus". Kali ini kita akan membahas tentang hubungan dua garis lurus. Untuk memudahkan mempelajari materi ini, sebaiknya pelajari dahulu materi "Gradien". Hubungan dua garis yang akan dipelajari adalah dua garis yang sejajar (berimpit) dan tegak lurus (berpotongan).

         Hubungan dua garis lurus sangat penting untuk kita pelajari karena biasanya untuk menentukan besarnya gradien (kemiringan) suatu garis bergantung dari garis lain. Dengan mengetahui hubungan kedua garis, maka kita pasti bisa menentukan gradien masing-masing. Selain penerapannya pada garis lurus secara langsung, hubungan dua garis khususnya gradiennya juga berguna ketika kita mempelajari materi garis singgung kurva dan garis singgung lingkaran serta garis singgung pada irisan kerucut.

Hubungan Dua Garis Lurus
Macam - macam Hubungan Dua Garis Lurus
       Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ . Ada beberapa hubungan yang bisa kita peroleh dari kedua garis tersebut, yaitu :

*). sejajar
       Dua garis sejajar syaratnya gradiennya sama ($m_1=m_2$).
Jika dilihat dari koefisiennya, syarat kedua garis sejajar yaitu $ \frac{a}{p} = \frac{b}{q} $ . Jika $ \frac{a}{p} = \frac{b}{q} = \frac{c}{r} \, $ , maka kedua garis tersebut berimpit. Dan jika $ \frac{a}{p} \neq \frac{b}{q} , \, $ maka kedua garis pasti berpotongan.

*). Tegak lurus
       Dua garis tegak lurus syaratnya perkalian gradien kedua garis hasilnya $ -1 \, $ atau $ m_1 \times m_2 = -1 $.
Jika dilihat dari koefisiennya, syarat dua garis tegak lurus yaitu $ \frac{a}{b} = -\frac{q}{p} $ .
Contoh :
1). Dari Persamaan garis berikut, manakah pasangan garis yang sejajar dan tegak lurus!
a. $ 2x - y = 5 $
b. $ 6x + 2y -3 = 0 $
c. $ x + 2y -7 = 0 $
d. $ -4x + 2y = 1 $
e. $ -x + 3y - 7 = 0 $
Penyelesaian :
*). Kita tentukan gradien masing-masing
Konsep : $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $
a. $ 2x - y = 5 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{-1} = 2 $
b. $ 6x + 2y -3 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{6}{2} = -3 $
c. $ x + 2y -7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{2} $
d. $ -4x + 2y = 1 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-4}{2} = 2 $
e. $ -x + 3y - 7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-1}{3} = \frac{1}{3} $
*). Garis yang sejajar adalah garis a dan garis d.
*). Garis yang tegak lurus adalah garis a dan c, serta garis b dan garis e.

2). Tentukan persamaan garis lurus yang melalui titik (-1,-3) dan sejajar dengan garis $ y = -3x + 5 $ !
Penyelesaian :
garis $ y = -3x + 5 \rightarrow m_1 = -3 $
*). Karena garis yang dicari sejajar dengan garis $ y = -3x + 5, \, $ maka gradiennya sama, sehingga gradien garis yang dicari adalah $ m = m_1 = -3 $
*). Menyusun persamaan garis lurusnya
garis melalui titik $(x_1,y_1) =(-1,-3) \, $ dan gradien $ m = -3 $
$ \begin{align} y - y_1 & = m(x-x_1) \\ y - (-3) & = -3(x-(-1)) \\ y + 3 & = -3(x+1) \\ y + 3 & = -3x - 3 \\ y & = -3x - 6 \end{align} $
Jadi, persamaan garisnya adalah $ y = -3x - 6 $

3). Tentukan persamaan garis lurus yang melalui titik (-1,-3) dan tegak lurus dengan garis $ y = -3x + 5 $ !
Penyelesaian :
garis $ y = -3x + 5 \rightarrow m_1 = -3 $
*). Karena garis yang dicari tegak lurus dengan garis $ y = -3x + 5, \, $ maka $ m_1.m_2 = -1 \rightarrow -3. m_2 = -1 \rightarrow m_2 = \frac{1}{3} \, $ . artinya gradien garis yang kita cari adalah $ m = \frac{1}{3} $
*). Menyusun persamaan garis lurusnya
garis melalui titik $(x_1,y_1) =(-1,-3) \, $ dan gradien $ m = \frac{1}{3} $
$ \begin{align} y - y_1 & = m(x-x_1) \\ y - (-3) & = \frac{1}{3}(x-(-1)) \\ y + 3 & = \frac{1}{3}(x+1) \\ 3y + 9 & = x + 1 \\ x - 3y & = 8 \end{align} $
Jadi, persamaan garisnya adalah $ x - 3y = 8 $

4). Diketahui garis $ (p+1)x - 3y = 3 $ tegak lurus dengan garis $ 2x + (2p - 1)y + 3 = 0 , \, $ tentukan nilai $ 4p - 1 $
Penyelesaian :
*). Menentukan gradien masing-masing
$ (p+1)x - 3y = 3 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{p+1}{-3} = \frac{p+1}{3} $
$ 2x + (2p - 1)y + 3 = 0 \rightarrow m_2 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{2p-1} $
*). Syarat dua garis tegak lurus : $ m_1.m_2 = -1 $
$ \begin{align} m_1.m_2 & = -1 \\ \left( \frac{p+1}{3} \right) . \left( - \frac{2}{2p-1} \right) & = -1 \\ \left( \frac{2p+2}{6p - 3} \right) & = 1 \\ 2p + 2 & = 6p - 3 \\ 6p - 2p & = 2 + 3 \\ 4p & = 5 \\ p & = \frac{5}{4} \end{align} $
Sehingga nilai $ 4p - 1 = 4. \frac{5}{4} - 1 = 5 - 1 = 4 $
Jadi, nilai $ 4p-1 = 4 $

Besarnya sudut antara Dua Garis Lurus
       Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ yang masing-masing memiliki gradien $ m_1 \, $ dan $ m_2 . \, $ Besarnya sudut antara kedua garis adalah $ \alpha , \, $ yang dapat ditentukn dengan rumus :
              $ \tan \alpha = \frac{m_1 - m_2}{1+m_1.m_2 } $
Contoh :
Tentukan besarnya sudut yang dibentuk oleh kedua garis $ y = \sqrt{3}x + 3 \, $ dan garis $ y = -\sqrt{3}x + 7 $ !
Penyelesaian :
*). Menentukan gradien masing-masing
$ y = \sqrt{3}x + 3 \rightarrow m_1 = \sqrt{3} $
$ y = -\sqrt{3}x + 7 \rightarrow m_2 = -\sqrt{3} $
*). Menentukan besar sudut kedua garis
$ \begin{align} \tan \alpha & = \frac{m_1 - m_2}{1+m_1.m_2 } \\ & = \frac{\sqrt{3} - (-\sqrt{3})}{1+\sqrt{3}.(-\sqrt{3}) } \\ & = \frac{2\sqrt{3}}{1+ (-3) } \\ & = \frac{2\sqrt{3}}{-2} \\ \tan \alpha & = -\sqrt{3} \end{align} $
Diperoleh $ \tan \alpha = - \sqrt{3} \, $ , berdasarkan tabel trigonometri maka diperoleh $ \alpha = 120^\circ $
Atau sudut terkecil kedua garis adalah $ 180^\circ - 120^\circ = 60^\circ $
Jadi, besar sudut yang dibentuk oleh kedua garis adalah $ 60^\circ $ .

Menentukan perpotongan dua garis lurus
       Untuk menentukan titik potong dua buah garis, bisa dilakukan dengan teknik eliminasi dan substitusi. Silahkan baca materi "Sistem Persamaan Linear Dua Variabel (SPLDV)"
Contoh
Tentukan persamaan garis lurus yang melalui perpotongan garis $ 3x - y = 2 \, $ dan garis $ 2x + y = 3 \, $ serta tegak lurus dengan garis $ x - 3y + 2 = 0 $ !
Penyelesaian :
*). Menentukan titik potong kedua garis dengan eliminasi dan substitusi
$\begin{array}{cc} 3x - y = 2 & \\ 2x + y = 3 & + \\ \hline 5x = 5 & \\ x = 1 & \end{array} $
Pers(ii) : $ 2x + y = 3 \rightarrow 2 . 1 + y = 3 \rightarrow y = 3 - 2 = 1 $
Sehingga titik potong kedua garis adalah (1,1)
*). Menentukan gradien
$ x - 3y + 2 = 0 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{-3} = \frac{1}{3} $
*). Karena garis yang dicari tegak lurus dengan garis $ x - 3y + 2 = 0, \, $ maka $ m_1.m_2 = -1 \rightarrow \frac{1}{3}. m_2 = -1 \rightarrow m_2 = -3 $ . artinya gradien garis yang kita cari adalah $ m = -3 $
*). Menyusun persamaan garis lurusnya
garis melalui titik $(x_1,y_1) =(1,1) \, $ dan gradien $ m = -3 $
$ \begin{align} y - y_1 & = m(x-x_1) \\ y - 1 & = -3(x-1) \\ y - 1 & = -3x + 3 \\ 3x + y & = 4 \end{align} $
Jadi, persamaan garisnya adalah $ 3x + y = 4 $

Gradien dan Menyusun Persamaan Garis Lurus


         Blog Koma - Untuk artikel kali ini kita akan membahas materi Gradien dan Menyusun Persamaan Garis Lurus, dimana sebelumnya telah kita bahas materi tentang bentuk umum persamaan garis lurus dan grafiknya yang berupa garis lurus. Jika sobat belum membacanya, silahkan kunjungi artikel "Persamaan Garis Lurus dan Grafiknya". Pada materi kali ini, kita akan bagi materinya menjadi tiga bagian yaitu membahas tentang gradien terlebih dahulu kemudian membahas tentang cara menyusun persamaan garis lurus yang diketahui dari berbagai kondisi serta membahas tentang konsep jarak dan tiga titik yang terletak pada satu garis lurus. Langsung saja berikut materinya,
Gradien persamaan garis lurus
Pengertian dan cara menentukan gradien suatu garis lurus
       Gradien suatu garis lurus merupakan ukuran kemiringan suatu garis terhadap garis horizontal. Gradien suatu garis bisa bernilai positif dan negatif. Suatu garis akan bergradien positif jika garisnya naik dari kiri ke kanan dan garis akan bergradien negatif jika garisnya turun dari kiri ke kanan. Gradien suatu garis lurus biasanya disimbolkan dengan huruf $ m $
Rumus umum kemiringan atau gradien suatu garis lurus :







Cara Menentukan nilai Gradien garis lurus :
*). Gradien garis melalui dua buah titik ($x_1,y_1$) dan ($x_2,y_2$)
Rumus gradien ($m$) : $ m = \frac{\text{Selisih } y }{\text{selish } x } = \frac{y_1 - y_2}{x_1 - x_2} \, $ atau $ m = \frac{y_2 - y_1}{x_2 - x_1} $
*). Diketahui persamaan garisnya :
       *). $ y = ax + b \rightarrow m = a $
       *). $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $
*). Diketahui grafiknya (garis pada diagram cartesius)
Garis melalui titik ($x_1,y_1) = (0,a$) dan ($x_2,y_2) = (b,0$), gradiennya :
gradien : $ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - a}{b - 0} = - \frac{a}{b} \, $ atau $ \, m = - \frac{\text{nilai pada } y}{\text{nilai pada } x} $
*). Diketahui besarnya sudut terhadap sumbu X positif
Misalkan besar sudutnya sebesar $ \alpha , \, $ maka gradiennya : $ m = \tan \alpha $
Contoh
1). Suatu garis lurus melalui titik (2,1) dan (-3, 5). Tentukan nilai gradiennya.!
Penyelesaian :
*). Garis melalui titik $(x_1,y_1) = (2,1) \, $ dan $ (x_2,y_2) = (-3,5) $
*). Menentukan besarnya gradien
$ \begin{align} m & = \frac{y_2 - y_1}{x_2 - x_1} \\ & = \frac{5 - 1}{(-3) - 2} \\ & = \frac{4}{-5} \\ & = - \frac{4}{5} \end{align} $
Diperoleh gradien garisnya adalah $ - \frac{4}{5} \, $ . Karena gradiennya negatif, maka garis tersebut menurun dari kiri ke kanan.

2). Tentukan besarnya gradien dari persamaan garis berikut ini !
a. $ y = 2x - 3 $
b. $ 3x + 2y = 2 $
c. $ 5y - 2x + 5 = 0 $
d. $ y = \frac{-3x+5}{2} $
Penyelesaian :
a. $ y = 2x - 3 $
berdasarkan $ y = ax + b \rightarrow m = a , \, $ maka $ y = 2x - 3 \rightarrow m = 2 $
b. $ 3x + 2y = 2 $
Cara I : menggunakan $ y = ax + b \rightarrow m = a $
$ 3x + 2y = 2 \rightarrow 2y = -3x + 2 \rightarrow y = -\frac{3}{2}x + 1 \rightarrow m = -\frac{3}{2} $
Cara II : $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $
$ 3x + 2y = 2 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = -\frac{3}{2} $
c. $ 5y - 2x + 5 = 0 $
Cara I : menggunakan $ y = ax + b \rightarrow m = a $
$ 5y - 2x + 5 = 0 \rightarrow 5y = 2x - 5 \rightarrow y = \frac{2}{5}x - 1 \rightarrow m = \frac{2}{5} $
Cara II : $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $
$ 5y - 2x + 5 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = -\frac{-2}{5} = \frac{2}{5} $
a. $ y = \frac{-3x+5}{2} $
berdasarkan $ y = ax + b \rightarrow m = a , \, $ maka $ y = \frac{-3x+5}{2} = -\frac{3}{2}x + \frac{5}{2} \rightarrow m = -\frac{3}{2} $

3). Dari garis berikut ini, tentukan gradiennya. !
Penyelesaian :
*). Gambar 1.
gradiennya : $ m = - \frac{\text{nilai pada } y}{\text{nilai pada } x} = -\frac{4}{2} = -2 $
*). Gambar 2.
gradiennya : $ m = - \frac{\text{nilai pada } y}{\text{nilai pada } x} = -\frac{-1}{2} = \frac{1}{2} $

4). Suatu garis membentuk sudut $ 45^\circ \, $ terhadap sumbu X positif, tentukan besarnya gradien garis tersebut!
Penyelesaian :
Gradiennya : $ m = \tan 45^\circ = 1 $
Untuk nilai $ \tan 45^\circ \, $ bisa kita lihat pada tabel trigonometri.

Menyusun persamaan garis lurus (PGL)
Cara Menyusun atau Menentukan persamaan garis lurus (PGL)
       Berikut cara Menyusun persamaan garis lurus,
*). Garis melalui dua titik ($x_1,y_1$) dan ($x_2,y_2$)
       PGL : $ \frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} $
*). Garis melalui satu titik ($x_1,y_1$) dan diketahui gradiennya ($m$)
       PGL : $ y - y_1 = m(x-x_1) $
*). Diketahui garisnya
Garis melalui dua titik ($x_1,y_1) = (0,a$) dan ($x_2,y_2) = (b,0$), sehingga
PGL : $ \frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} \rightarrow \frac{y-a}{0-a} = \frac{x-0}{b-0} \rightarrow ax + by = ab $
Contoh :
1). Tentukan persamaan garis lurus yang melalui titik (1,-2) dan (3,4) !
Penyelesaian :
*). Garis melalui titik ($x_1,y_1) = (1,-2$) dan ($x_2,y_2) = (3,4$)
*). Menentukan persamaan garisnya
$ \begin{align} \frac{y-y_1}{y_2-y_1} & = \frac{x-x_1}{x_2-x_1} \\ \frac{y-(-2)}{4-(-2)} & = \frac{x-1}{3-1} \\ \frac{y+2}{6} & = \frac{x-1}{2} \, \, \, \, \text{(kali 2)} \\ \frac{y+2}{3} & = \frac{x-1}{1} \, \, \, \, \text{(kali silang)} \\ y+2 & = 3x - 3 \\ y & = 3x - 5 \end{align} $
Jadi, persamaan garisnya adalah $ y = 3x - 5 $

2). Suatu garis memiliki gradien 2 dan melalui titik (2,3), tentukan persamaan garis tersebut!
Penyelesaian :
*). Diketahui $(x_1,y_1) = (2,3) \, $ dan $ m = 2 $
*). Menyusun persamaan garisnya
$ \begin{align} y - y_1 & = m(x-x_1) \\ y - 3 & = 2(x-2) \\ y - 3 & = 2x - 4 \\ y & = 2x - 4 + 3 \\ y & = 2x - 1 \end{align} $
Jadi, persamaan garis lurusnya adalah $ y = 2x - 1 $

3). Dari grafik berikut ini, tentukanlah persamaan garisnya !
Penyelesaian :
*). Gambar 1.
Pgl : $ ax + by = ab \rightarrow 4x + 2y = 4 \times 2 \rightarrow 4x + 2y = 8 $
*). Gambar 2.
Pgl : $ ax + by = ab \rightarrow -1.x + 2y = -1 \times 2 \rightarrow -x + 2y = -2 $

4). Suatu garis melalui titik (1,2), (3,1), ($0,p$), dan ($2,q$). Tentukan nilai $ 2p + 4q $ !
Penyelesaian :
*). Kita cari persamaan garisnya yang melalui titik (1,2) dan (3,1)!
$ \begin{align} \frac{y-y_1}{y_2-y_1} & = \frac{x-x_1}{x_2-x_1} \\ \frac{y-2}{1-2} & = \frac{x-1}{3-1} \\ \frac{y-2}{-1} & = \frac{x-1}{2} \\ 2y - 4 & = -x + 1 \\ x + 2y & = 5 \end{align} $
*). Menentukan nilai $ p \, $ dan $ q \, $ dengan cara substitusi ke PGL
$ \begin{align} (x,y)=(0,p) \rightarrow x + 2y & = 5 \\ 0 + 2p & = 5 \\ p & = \frac{5}{2} \\ (x,y)=(2,q) \rightarrow x + 2y & = 5 \\ 2 + 2q & = 5 \\ 2q & = 3 \\ q & = \frac{3}{2} \end{align} $
*). Menentukan nilai $ 2p + 4q $
$ 2p + 4q = 2. \frac{5}{2} + 4 . \frac{3}{2} = 5 + 6 = 11 $
Jadi, nilai $ 2p + 4q = 11 $ .

Konsep Jarak pada garis lurus
Jarak dan Tiga titik yang terletak pada garis lurus
*). Jarak titik A($x_1,y_1$) dengan titik B($x_2,y_2$) :
       Jarak = $ \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} $
*). Jarak titik A($x_1,y_1$) dengan garis $ ax+by+c = 0 $
       Jarak = $ \left| \frac{a.x_1 + b.y_1 +c}{\sqrt{a^2 + b^2} }\right| $
*). Jarak dua garis yang sejajar antara $ ax+by+c_1 = 0 \, $ dengan $ ax+by+c_2 = 0 $
       Jarak = $ \left| \frac{c_2 - c_1}{\sqrt{a^2+b^2}} \right| $
Catatan : Jika dua garis tersebut tidak sejajar, pasti kedua garis tersebut berpotongan, sehingga jaraknya pasti nol.

*). Tiga titik $(x_1,y_1), \, (x_2,y_2), \, (x_3,y_3) \, $ terletak pada satu garis
       jika memenuhi : $ \frac{y_3-y_1}{y_2-y_1} = \frac{x_3-x_1}{x_2-x_1} $
Contoh :
1). Tentukan besarnya jarak dari
a). titik A(2,-1) dengan titik B(-1,3)
b). titik P(2,3) dengan garis $ 3x + 4y - 3 = 0 $
c). garis $ 4x - 3y + 4 = 0 $ dengan garis $ -8x + 6y + 2 = 0 $
Penyelesaian :
a). Jarak titik A($x_1,y_1) = (2,-1$) dengan B($x_2,y_2) = (-1,3$)
$ \begin{align} \text{Jarak } & = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \\ & = \sqrt{(-1 - 2)^2 + (3-(-1))^2} \\ & = \sqrt{(-3)^2 + (4)^2} \\ & = \sqrt{9 + 16} \\ & = \sqrt{25} \\ & = 5 \end{align} $
Jadi, jarak kedua titik adalah 5 satuan.
b). Jarak titik P($x_1,y_1) = (2,3$) dengan garis $ 3x + 4y - 3 = 0 $
$ \begin{align} \text{Jarak } & = \left| \frac{a.x_1 + b.y_1 +c}{\sqrt{a^2 + b^2} }\right| \\ & = \left| \frac{3.2 + 4.3 - 3}{\sqrt{3^2 + 4^2} }\right| \\ & = \left| \frac{6 + 12 - 3}{\sqrt{25} }\right| \\ & = \left| \frac{15}{5}\right| \\ & = 3 \end{align} $
Jadi, jarak titik dan garisnya adalah 3 satuan.
c). Cek apakah kedua garis sejajar dengan cara cek apakah gradiennya sama.
Untuk materi dua garis sejajar, silahkan baca artikel "Hubungan Dua Garis Lurus".
$ 4x - 3y + 4 = 0 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{4}{-3} = \frac{4}{3} $
$ -8x + 6y + 2 = 0 \rightarrow m_2 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-8}{6} = \frac{4}{3} $
Karena kedua garis memiliki gradien yang sama, maka kedua garis sejajar.
*). Menyamakan nilai koefisien $ x \, $ dan $ y $
$ -8x + 6y + 2 = 0 \, \, \, \text{(bagi -2) } \rightarrow 4x - 3y - 1 = 0 $
*). Jarak garis $ 4x - 3y + 4 = 0 \rightarrow c_1 = 4 \, $ dengan $ 4x - 3y - 1 = 0 \rightarrow c_2 = -1 $
Jarak = $ \left| \frac{c_2 - c_1}{\sqrt{a^2+b^2}} \right| = \left| \frac{-1 - 4}{\sqrt{4^2+(-3)^2}} \right| = \left| \frac{-5}{\sqrt{25}} \right| = \left| \frac{-5}{5} \right| = | -1 | = 1 $
Jadi, jarak kedua garis adalah 1 satuan.

2). Jika titik A(2,1), B(3,-5), dan C($a,-1$) terletak pada satu garis, tentukan nilai $ a $ !
Penyelesaian :
*). Titik $(x_1,y_1) = (2,1), \, (x_2,y_2) = (3,-5), \, (x_3,y_3) = (a,-1) \, $
*). Menentukan nilai $ a \, $ dari syarat segaris
$\begin{align} \frac{y_3-y_1}{y_2-y_1} & = \frac{x_3-x_1}{x_2-x_1} \\ \frac{-1 - 1}{-5-1} & = \frac{a-2}{3-2} \\ \frac{-2}{-6} & = \frac{a-2}{1} \\ \frac{1}{3} & = \frac{a-2}{1} \\ a - 2 & = \frac{1}{3} \\ a & = \frac{1}{3} + 2 \\ a & = \frac{7}{3} \end{align} $
Jadi, nilai $ a = \frac{7}{3} $

Senin, 21 September 2015

Persamaan Garis Lurus dan Grafiknya


         Blog Koma - Persamaan garis lurus (PGL) merupakan suatu persamaan linear dengan dua variabel. Jika diubah dalam bentuk fungsi ($y = f(x)$), maka akan terbentuk fungsi linear yang grafiknya berupa garis lurus. Berikut kita akan bahas tentang bentuk umum persamaan garis lurus dan grafiknya (garis lurus)

         Materi persamaan garis lurus dan grafiknya ini sebenarnya sudah dipelajari di tingkat SMP, dan dipelajari kembali di tingkat SMA. Tentu untuk pembahasan tingkat SMA akan lebih mendalam baik dari segi teori maupun tipe soalnya. Jadi, bagi teman-teman jangan pernah bosan untuk mempelajarinya. Kenapa materi persamaan garis lurus atau persamaan linear dipelajari kembali? Karena materi ini ada kaitannya dengan salah satu bab dalam matematika yaitu "program linear" dan "persamaan garis singgung kurva".

Bentuk Umum Persamaan Garis Lurus
Bentuk Umum PGL
       Misalkan $ a , b, c \in R \, $ (bilangan real) , dan terdapat variabel $ x \, $ dan $ y \, $ , maka bentuk umum persamaan garis lurus adalah $ ax + by = c \, $ .
Keterangan :
$ a \, $ sebagai koefisien $ x$
$b \, $ sebagai koefisien $ y \, $ dan $ c \, $ adalah konstanta
variabel $ x \, $ dan $ y \, $ harus berpangkat satu.
Contoh : Dari persamaan berikut ini, manakah yang merupakan persamaan garis lurus!
a). $ 2x+3y = 2 $
b). $ x - \frac{2}{3} y = 9 $
c). $ x = 5 $
d). $ y = 3 $
e). $ x^2 - 2y = 7 $
f). $ y = \frac{3}{x} $
g). $ xy + y = -5 $
Penyelesaian :
*). Yang merupakan persamaan garis lurus adalah a, b, c, dan d.
*). yang bukan PGL :
e. $ x^2 - 2y = 7 $ karena variabel $ x \, $ pangkatnya bukan satu
f). $ y = \frac{3}{x} \rightarrow xy = 3 $ karena variabel $ x \, $ dan $ y \, $ menjadi satu suku sehingga pangkatnya kalau digabung bukan pangkat satu lagi. Begitu juga untuk bagian g). $ xy + y = -5 $

Grafik Persamaan Garis Lurus
Cara Menggambar Garis Lurus pada Diagram Cartesius
       Untuk menggambar garis yang diketahui persamaan garis lurusnya, kita bagi menjadi beberapa bagian tergantung dari bentuk persamaannya.

*). Persamaan garis lurus lengkap $ ax + by = c $
     Persamaan garis lurus lengkap disini maksudnya adalah variabel $ x \, $ dan $ y \, $ dua-duanya ada.
Cara menggambarnya :
Cara I : Menentukan dua titik yang dilewati oleh garis, kemudian hubungkan kedua titik tersebut sehingga membentuk garis.
Cara II : Menentukan dua titik potong pada sumbu X dan sumbu Y. Untuk titik potong sumbu X, substitusi $ y = 0 \, $ dan untuk titik potong sumbu Y, substitusikanlah $ x = 0 $ .

*). Persamaan garis tidak lengkap yaitu $ x = a \, $ dan $ y = b $
     Untuk garis $ x = a \, $ berupa garis lurus tegak (vertikal) dan garis $ y = b \, $ berupa garis lurus datar (horizontal).
Contoh
1). Tentukan dua titik yang dilewati oleh persamaan garis lurus $ 2x - 3y = 6 \, $ dan gambarlah garisnya!
Penyelesaian :
*). Untuk menentukan dua titik yang dilewati oleh garis, kita tentukan sebarang nilai untuk variabel $ x \, $ atau $ y \, $ lalu kita substitusikan nilai yang kita pilih sebelumnya ke persamaan sehingga diperoleh nilai variabel yang belum diketahui.
Misal kita pilih $ x = 0 \, $ , substitusi ke persamaan
$ \begin{align} x = 0 \rightarrow 2x - 3y & = 6 \\ 2. 0 - 3y & = 6 \\ 0 - 3y & = 6 \\ - 3y & = 6 \\ y & = \frac{6}{-3} = -2 \end{align} $
Sehingga titik pertama yang dilewati oleh garis adalah (0, -2).
Misal kita pilih $ y = 2 \, $ , substitusi ke persamaan
$ \begin{align} y = 2 \rightarrow 2x - 3y & = 6 \\ 2x - 3.2 & = 6 \\ 2x - 6 & = 6 \\ 2x & = 12 \\ x & = \frac{12}{2} = 6 \end{align} $
Sehingga titik kedua yang dilewati oleh garis adalah (6, 2).
Artinya garis lurus $ 2x - 3y = 6 \, $ melalui titik (0, -2) dan (6, 2). Berikut grafiknya :
Catatan :
Sebenarnya dua titik yang kita cari bebas, terserah sobat ingin memasukkan sebarang titik dan tidak harus dua titik seperti di contoh ini. misalkan pilih $ x = 1 \, $ , lalu kita substitusi ke persamaan, maka akan kita peroleh nilai $ y \, $ , atau pilih nilai $ y \, $ lalu kita substitusi ke persamaan dan akan kita peroleh nilai $ x $ .

2). Dari persamaan garis lurus $ x + 2y = 4, \, $ tentukanlah titik potong terhadap sumbu X dan sumbu Y, serta gambarlah garisnya!
Penyelesaian :
*)Titik potong sumbu X, substitusi $ y = 0 $
$ \begin{align} y = 0 \rightarrow x + 2y & = 4 \\ x + 2. 0 & = 4 \\ x + 0 & = 4 \\ x & = 4 \end{align} $
Sehingga titik potong sumbu X adalah (4, 0).
*)Titik potong sumbu Y, substitusi $ x = 0 $
$ \begin{align} x = 0 \rightarrow x + 2y & = 4 \\ 0 + 2y & = 4 \\ 2y & = 4 \\ y & = \frac{4}{2} = 2 \end{align} $
Sehingga titik potong sumbu Y adalah (0, 2).
*). Grafik garis lurus $ x + 2y = 4 $ yaitu

3). Gambarlah grafik garis lurus dengan persamaan!
a. $ x = -1 $
b. $ y = 2 $
Penyelesaian :
Berikut langsung grafik masing-masing

4). Diketahui persamaan garis $ ax + by = 1 \, $ melalui titik (2,1) dan titik (-4,-1). Tentukan nilai $ a + b $ !
Penyelesaian :
*)Untuk menentukan nilai $ a \, $ dan $ b \, $ , kita substitusi semua titik yang dilalui ke persamaan.
$ \begin{align} (x,y)=(2,1) \rightarrow ax + by & = 1 \\ a.2 + b.1 & = 1 \\ 2a + b & = 1 \, \, \, \, \text{....pers(i)} \\ (x,y)=(-4,-1) \rightarrow ax + by & = 1 \\ a.(-4) + b.(-1) & = 1 \\ -4a - b & = 1 \, \, \, \, \text{....pers(ii)} \end{align} $
*) Eliminasi pers(i) dan pers(ii)
$\begin{array}{cc} 2a + b = 1 & \\ -4a - b = 1 & + \\ \hline -2a = 2 & \\ a = -1 & \end{array} $
Pers (i) : $ 2a + b = 1 \rightarrow 2(-1) + b = 1 \rightarrow b = 3 $
Sehingga nilai $ a + b = -1 + 3 = 2 $
Jadi, nilai $ a + b = 2 $