Tampilkan posting dengan label limit. Tampilkan semua posting
Tampilkan posting dengan label limit. Tampilkan semua posting

Kamis, 08 Juni 2017

Limit Tak Hingga Fungsi Trigonometri

         Blog Koma - Pada artikel ini kita akan membahas materi Limit Tak Hingga Fungsi Trigonometri. Materi Limit Tak Hingga Fungsi Trigonometri merupakan gabungan bentuk limit tak hingga dan limit fungsi trigonometri. Jika kita perdalam lagi, ternyata bentuk "Limit Tak Hingga Fungsi Trigonometri" lebih menekankan pada limit fungsi trigonometrinya, sehingga teman-teman harus benar-benar menguasai materi limit fungsi trigonometrinya terlebih dahulu.

         Bentuk tak hingga ($\infty$) jika sebagai sudut suatu fungsi trigonometri maka tidak bisa kita tentukan nilainya, misalkan $ \sin \infty, \cos \infty, \tan \infty $ tidak bisa kita tentukan nilainya karena nilai $ \sin x $ berkisar $ -1 \leq \sin x \leq 1 $, begitu juga nilai $ \cos x $ berkisar $ -1 \leq \cos x \leq 1 $ , dan untuk $ \tan x $ berkisar $ -\infty \leq \tan x \leq \infty $, tentu dengan $ x $ yang sudah pasti. Nah untuk memudahkan, maka bentuk yang diguankan adalah $ \frac{1}{\infty} = 0 $ sehingga nilai fungsi trigonometrinya bisa kita hitung yaitu $ \sin \frac{1}{\infty} = 0 , \cos \frac{1}{\infty} = 1, \tan \frac{1}{\infty} = 0 $ . Dan bentuk ini cocok dengan limit fungsi trigonometri yang akan kita bahas dalam artikel Limit Tak Hingga Fungsi Trigonometri.


         Limit Tak Hingga Fungsi Trigonometri ini ternyata soalnya dikeluarkan pada SBMPTN 2017 matematika IPA atau matematika saintek satu soal disetiap kodenya. Nah, berlatar belakang dari inilah saya membahas artikel ini secara lebih khusus agar bisa membantu teman-teman yang ingin mempelajarinya atau siapa tahu tahun-tahun berikutnya akan keluar lagi di soal seleksi masuk PTN lainnya. Dalam pembahasan Limit Tak Hingga Fungsi Trigonometri, kita harus menguasai sifat-sifat limit fungsi trigonometri, rumus-rumus dasar trigonometri, dan limit tak hingga bentuk aljabar.

Sifat-sifat limit fungsi Trigonometri
$\clubsuit $ Sifat-sifat limit fungsi trigonometri
i). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\sin bx} = \frac{a}{b} $
ii). $ \displaystyle \lim_{x \to 0 } \frac{\tan ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\tan bx} = \frac{a}{b} $
iii). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\sin bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\tan bx} = \frac{a}{b} $
iv). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\tan bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\sin bx} = \frac{a}{b} $
Rumus-rumus dasar Trigonometri
$\spadesuit $ Beberapa rumus yang digunakan dalam limit fungsi trigonometri :
i). $ 1 - \cos px = 2\sin \frac{1}{2} px . \sin \frac{1}{2} px $
ii). $ \cos A - \cos B = -2\sin \frac{1}{2}(A+B) .\sin \frac{1}{2}(A-B) $
iii). Identitas trigonometri :
$ \sin ^2 x + \cos ^2 x = 1 \rightarrow 1 - \cos ^2 x = \sin ^2 x $
Limit tak hingga fungsi aljabar
$\clubsuit $ Limit tak hingga pecahan :
Misalkan fungsinya $ f(x) = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ g(x) = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya :
$ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n < m \\ = \frac{a}{b} & & , \text{untuk } n = m \\ = \frac{a}{0} & = \infty & , \text{untuk } n > m \end{array} \right. $
Catatan : Ambil koefisien pangkat tertingginya.

Contoh Soal Limit Tak Hingga Fungsi Trigonometri :

1). Tentukan hasil limit berikut ini :
a). $ \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} $
b). $ \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} $
c). $ \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} $

Penyelesaian :
a). Misalkan $ \frac{1}{x} = y $ , sehingga $ x = \frac{1}{y} $ .
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} & = \displaystyle \lim_{y \to 0 } \, \frac{1}{y} \tan y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{ \tan y }{y} \\ & = 1 \end{align} $

b). Misalkan $ \frac{1}{y} = x $ , dan $ \cot x = \frac{1}{\tan x} $ .
Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} & = \displaystyle \lim_{x \to 0 } \, x \cot x \\ & = \displaystyle \lim_{x \to 0 } \, x . \frac{1}{\tan x} \\ & = \displaystyle \lim_{x \to 0 } \, \frac{x}{\tan x} \\ & = 1 \end{align} $

c). Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ .
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} & = \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \csc \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, y . \csc y \\ & = \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\sin y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{y}{\sin y} \\ & = 1 \end{align} $

2). Tentukan hasil limit tak kingga fungsi trigonometri berikut ini :
a). $ \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} $
b). $ \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} $
b). $ \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} $

Penyelesaian :
a). Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ .
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \csc 2y \\ & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \frac{1}{\sin 2y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\tan 5y}{\sin 2y} \\ & = \frac{5}{2} \end{align} $

b). Misalkan $ \frac{1}{x} = y $ , dan $ \cot y = \frac{1}{\tan y} $ .
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} & = \displaystyle \lim_{x \to \infty } \, \cot \frac{3}{x} . \sin \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, \cot 3y . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{1}{\tan 3y} . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin y}{\tan 3y} \\ & = \frac{1}{3} \end{align} $

c). Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ .
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{\cot \frac{1}{2}y}{\csc 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\frac{1}{\tan \frac{1}{2}y}}{\frac{1}{\sin 3y}} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin 3y}{\tan \frac{1}{2}y} \\ & = \frac{3}{ \frac{1}{2} } = 6 \end{align} $

3). Tentukan hasil limit tak kingga fungsi trigonometri $ \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} $?

Penyelesaian :
*). Misalkan $ \frac{1}{\sqrt{y}} = x $ , sehingga $ \sqrt{y} = \frac{1}{x} $ .
Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} & = \displaystyle \lim_{y \to \infty } \, \sqrt{6}.\sqrt{y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}.\frac{1}{x} \cos 3x \sin 5x \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}. \cos 3x . \frac{\sin 5x}{x} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6} \cos 3x . \displaystyle \lim_{x \to 0 } \frac{\sin 5x}{x} \\ & = \sqrt{6} . \cos 0 . 5 \\ & = \sqrt{6}. 1 . 5 = 5\sqrt{6} \end{align} $

4). $ \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} = .... ? $

Penyelesaian :
*). Misalkan $ \frac{1}{x} = y $.
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
Bentuk $ 1 - \cos 4y = 2\sin 2y. \sin 2y $
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{1 - \cos 4y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y. \sin 2y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y}{ y } . \displaystyle \lim_{y \to 0 } \, \frac{ \sin 2y}{\tan 3y} \\ & = 2.2 .\frac{2}{3} = \frac{8}{3} \end{align} $

5). Tentukan hasil limit $ \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} $

Penyelesaian :
*). Misalkan $ \frac{1}{x} = y $ dan $ \cot y = \frac{1}{\tan y} $
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Menyelesaikan limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} & = \displaystyle \lim_{x \to \infty } \, \frac{(2x - 3) \cot \frac{2}{x}}{x(5x - 2)} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{(2x - 3) }{5x - 2} . \frac{1}{x} . \cot \frac{2}{x} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{(2x - 3) }{5x - 2} . \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \cot \frac{2}{x} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \cot 2y \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\tan 2y} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, \frac{y}{\tan 2y} \\ & = \frac{2}{5}. \frac{1}{2} = \frac{1}{5} \end{align} $

6). $ \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1}= ...?$

Penyelesaian :
*). Misalkan $ \frac{1}{x} = y $, maka $ \frac{1}{\sqrt{x}} = \sqrt{y} $
Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $.
*). Mengubah bentuk soalnya :
$ \begin{align} & \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \end{align} $
*). Mengubah bentuk pembilang dan penyebutnya :
-). Pembilangnya, Rumus $ \cos A - \cos B = -2 \sin \frac{1}{2}(A+B).\sin \frac{1}{2}(A-B) $
$ \begin{align} & \cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y \\ & = \cos 4y - \cos 4y. \sin 3\sqrt{y} - \cos 2y + \cos 2y . \sin 3\sqrt{y} \\ & = \cos 4y ( 1 - \sin 3\sqrt{y} ) - \cos 2y ( 1 - \sin 3\sqrt{y} ) \\ & = (\cos 4y - \cos 2y) ( 1 - \sin 3\sqrt{y} ) \\ & = (-2 \sin \frac{1}{2}(4y+2y). \sin \frac{1}{2}(4y-2y)) ( 1 - \sin 3\sqrt{y} ) \\ & = -2 \sin 3y. \sin y. ( 1 - \sin 3\sqrt{y} ) \end{align} $
-). Penyebutnya, Rumus $ 1 - \cos px = 2 \sin \frac{1}{2} px . \sin \frac{1}{2} px $
$ \begin{align} \sin ^2 y - \cos 2y + 1 & = \sin ^2 y + (1 - \cos 2y) \\ & = \sin ^2 y + 2\sin y . \sin y \\ & = 3\sin y . \sin y \end{align} $
*). Menyelesaikan limitnya :
$ \begin{align} & \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. \sin y. ( 1 - \sin 3\sqrt{y} ) }{3\sin y . \sin y} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. ( 1 - \sin 3\sqrt{y} ) }{3\sin y } \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \frac{-2}{3}( 1 - \sin 3\sqrt{y} ) \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \displaystyle \lim_{y \to 0 } \frac{-2}{3}( 1 - \sin 3\sqrt{y} ) \\ & = 3 . \frac{-2}{3}( 1 - \sin 0 ) \\ & = 3 . \frac{-2}{3}( 1 - 0 ) \\ & = 3 . \frac{-2}{3}.( 1 ) = -2 \end{align} $

Berikut kami sajikan 4 soal limit tak hingga fungsi trigonometri yang keluar pada soal SBMPTN 2017 matematika IPA dari 4 kode berbeda:

Nomor 11 , Soal SBMPTN 2017 Kode 165
$ \displaystyle \lim_{y \to \infty } y . \sin \frac{3}{y}. \cos \frac{5}{y} = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $

Nomor 11, Soal SBMPTN 2017 Kode 166
$ \displaystyle \lim_{x \to \infty } \frac{\sin \frac{3}{x}}{\left(1 - \cos \frac{2}{x} \right).x^2.\sin \frac{1}{x}} = .... $
A). $ 0 \, $ B). $ \frac{2}{3} \, $ C). $ 1 \, $ D). $ \frac{3}{2} \, $ E). $ 3 $

Nomor 11, Soal SBMPTN 2017 Kode 167
$ \displaystyle \lim_{x \to \infty } \, x\left(1 - \cos \frac{1}{\sqrt{x}} \right) = .... $
A). $ 1 \, $ B). $ \frac{1}{2} \, $ C). $ \frac{1}{3} \, $ D). $ \frac{1}{4} \, $ E). $ \frac{1}{5} $

Nomor 11, Soal SBMPTN 2017 Kode 168
$ \displaystyle \lim_{x \to \infty } \, 2x \tan \frac{1}{x}. \sec \frac{2}{x} = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $

       Demikian pembahasan materi Limit Tak Hingga Fungsi Trigonometri dan contohnya. Silahkan baca juga materi Limit lainnya.

Selasa, 24 November 2015

Limit Tak Hingga Fungsi Khusus

         Blog Koma - Sebelumnya telah kita bahas materi "Penyelesaian Limit Tak Hingga", kali ini kita akan belajar materi yang lebih menantang yaitu Limit Tak Hingga Fungsi Khusus. Limit Tak Hingga Fungsi Khusus merupakan limit di tak hingga ( $ x \rightarrow \infty $) dengan fungsi yang lebih menarik atau menantang lagi. Konsep limit yang akan kita libatkan adalah "Penyelesaian Limit Fungsi dengan Dalil L'Hospital atau Turunan"

Penyelesaian Limit Tak Hingga Fungsi Khusus
       Berikut penyelesaian Limit Tak Hingga Fungsi Khusus yang sering dipakai dan bentuknya paling sederhana :
1). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{1}{x} \right)^x = e \end{align} \, \, \, \, \, \, $ 2). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{1}{x} \right)^x = e^{-1} \end{align} $
3). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x = e^{n} \end{align} \, \, \, \, \, \, $ 4). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + x \right)^\frac{1}{x} = e \end{align} $
5). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - x \right)^\frac{1}{x} = e^{-1} \end{align} \, \, \, \, \, \, $ 6). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + nx \right)^\frac{1}{x} = e^{n} \end{align} $
7). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - nx \right)^\frac{1}{x} = e^{-n} \end{align} \, \, \, \, \, \, $ 8). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{n}{x} \right)^x = e^{-n} \end{align} $

dengan $ e = 2,7182818..... \, $ ($ e = \, $ bilangan euler)
Contoh :
1). Tentukan hasil limit tak hingga berikut :
a). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{x} \right)^x \end{align} \, \, \, \, \, \, $ b). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + 3x \right)^\frac{1}{x} \end{align} $
c). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{x} \right)^x \end{align} \, \, \, \, \, \, $ d). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - 4x \right)^\frac{1}{x} \end{align} $
Penyelesaian :
*). Kita langsung menggunakan bentuk dasar limit fungsi khusus di atas,
a). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{x} \right)^x = e^2 \end{align} \, \, $ (rumus 3).
b). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + 3x \right)^\frac{1}{x} = e^3 \end{align} \, \, $ (rumus 6).
c). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{x} \right)^x = e^{-5} \end{align} \, \, $ (rumus 8).
d). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - 4x \right)^\frac{1}{x} = e^{-4} \end{align} \, \, $ (rumus 7).

2). Tentukan hasil limit tak hingga fungsi khusus berikut :
a). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{3x} \right)^{5x} \end{align} \, \, \, \, \, \, $ b). $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - 3x \right)^\frac{7}{x} \end{align} $
Penyelesaian :
*). Kita modifikasi bentuk limitnya dan gunakan sifat dasar,
gunakan juga sifat eksponen : $ (a^{m.n}) = [(a^m)]^n $
a). Modifikasi dengan permisalan $ 3x = y \, $ dan gunakan rumus 3.
$ x $ menuju tak hingga, maka $ 3x $ menuju tak hingga.
$ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{3x} \right)^{5x} & = \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{3x} \right)^{5x. \frac{3}{3}} \\ & = \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{3x} \right)^{3x. \frac{5}{3}} \\ & = \left[ \displaystyle \lim_{x \to \infty } \left( 1 + \frac{2}{3x} \right)^{3x} \right]^\frac{5}{3} \\ & = \left[ \displaystyle \lim_{3x \to \infty } \left( 1 + \frac{2}{3x} \right)^{3x} \right]^\frac{5}{3} \\ & = \left[ \displaystyle \lim_{y \to \infty } \left( 1 + \frac{2}{y} \right)^{y} \right]^\frac{5}{3} \\ & = \left( e^2 \right)^\frac{5}{3} \\ & = e^\frac{10}{3} \end{align} $

b). Modifikasi dan gunakan rumus 7.
$ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 - 3x \right)^\frac{7}{x} & = \displaystyle \lim_{x \to 0 } \left( 1 - 3x \right)^{\frac{1}{x} . 7} \\ & = \left[ \displaystyle \lim_{x \to 0 } \left( 1 - 3x \right)^{\frac{1}{x} } \right]^7 \\ & = \left[ e^{-3} \right]^7 \\ & = e^{-21} \end{align} $

3). Tentukan hasil limit tak hingga fungsi khusus berikut :
a). $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{x-2} \end{align} \, \, \, \, \, \, $ b). $ \begin{align} \displaystyle \lim_{x \to 1 } \left( x^2 + 2x - 2 \right)^\frac{5}{x^2 + 2x - 3} \end{align} $
Penyelesaian :
*). Modifikasi limitnya dan gunakan rumus dasar limit tak hingga di atas,
gunakan juga sifat eksponen : $ (a^{m.n}) = [(a^m)]^n $
a). Modifikasi dan gunakan rumus dasar 8 .
Misalkan $ 3x-6 = y \, $ . untuk $ x $ menuju tak hingga, maka $ 3x-6 $ menuju tak hingga.
$ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{x-2} & = \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{(x-2).\frac{3}{3}} \\ & = \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{(3x-6).\frac{1}{3}} \\ & = \left[ \displaystyle \lim_{x \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{(3x-6)} \right]^\frac{1}{3} \\ & = \left[ \displaystyle \lim_{3x-6 \to \infty } \left( 1 - \frac{5}{3x-6} \right)^{(3x-6)} \right]^\frac{1}{3} \\ & = \left[ \displaystyle \lim_{y \to \infty } \left( 1 - \frac{5}{y} \right)^{y} \right]^\frac{1}{3} \\ & = \left[ e^{-5} \right]^\frac{1}{3} \\ & = e^\frac{-5}{3} \end{align} $

b). Modifikasi dan gunakan rumus dasar 4.
misalkan $ x^2 + 2x - 3 = y \, $ . untuk $ x $ menuju 1, maka $ x^2 + 2x - 3 \, $ menuju nol.
$ \begin{align} \displaystyle \lim_{x \to 1 } \left( x^2 - 2x - 2 \right)^\frac{5}{x^2 + 2x - 3} & = \displaystyle \lim_{x \to 1 } \left( x^2 + 2x - 3 + 1 \right)^{\frac{1}{x^2 + 2x - 3} . 5} \\ & = \displaystyle \lim_{x \to 1 } \left( 1 + (x^2 + 2x - 3) \right)^{\frac{1}{x^2 + 2x - 3} . 5} \\ & = \left[ \displaystyle \lim_{x \to 1 } \left( 1 + (x^2 + 2x - 3) \right)^{\frac{1}{x^2 + 2x - 3} } \right]^5 \\ & = \left[ \displaystyle \lim_{(x^2 + 2x - 3) \to 0 } \left( 1 + (x^2 + 2x - 3) \right)^{\frac{1}{x^2 + 2x - 3} } \right]^5 \\ & = \left[ \displaystyle \lim_{y \to 0 } \left( 1 + y \right)^\frac{1}{y} \right]^5 \\ & = \left[ e \right]^5 \\ & = e^5 \end{align} $

Pembuktian Rumus Dasar Limit Tak Hingga Fungsi Khusus
*). Untuk membuktikan rumus dasar limit tak hingga fungsi khusus, ada beberapa konsep dasar yang kita gunakan.
*). Bentuk $ Ln \, $ . $ Ln \, $ sama dengan logaritma hanya saja basisnya $ e $.
Bentuk $ {}^e \log b \, $ sama saja dengan $ \ln b $ . Artinya bentuk $ \ln \, $ memiliki sifat yang sama dengan logaritma.
Sifat yang digunakan adalah $ \ln b^n = n . \ln b $
*). Turunan bentuk $ \ln f(x) $ :
misalkan : $ y = \ln f(x) \rightarrow y^\prime = \frac{1}{f(x)} . f^\prime (x) $ .
*). Penggunakan turunan pada limit bentuk tak tentu (Dalil L'Hospital).
*). Persamaan logaritma : $ {}^a \log b = c \rightarrow b = a^c $
sehingga : $ \ln b = c \rightarrow b = e^c $

$ \spadesuit $ Pembuktian rumus dasar : $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x = e^{n} \end{align} $
*). Misalkan nilai $ t = \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x \end{align} $
*). Turunan fungsi :
$ y = \frac{1}{x} \rightarrow y^\prime = -x^{-2} $
$ y = \ln (1 + \frac{n}{x} ) \rightarrow y^\prime = \frac{1}{1 + \frac{n}{x} } . (-n.x^{-2}) $
*). Pembuktiannya :
$ \begin{align} t & = \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x \\ \ln t & = \ln \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x \\ \ln t & = \displaystyle \lim_{x \to \infty } \ln \left( 1 + \frac{n}{x} \right)^x \\ \ln t & = \displaystyle \lim_{x \to \infty } x . \ln \left( 1 + \frac{n}{x} \right) \\ \ln t & = \displaystyle \lim_{x \to \infty } \frac{ \ln \left( 1 + \frac{n}{x} \right) }{\frac{1}{x} } \, \, \, \, \, \text{(L'Hospital)} \\ \ln t & = \displaystyle \lim_{x \to \infty } \frac{ \frac{1}{1 + \frac{n}{x} } . (-n.x^{-2}) }{ -x^{-2} } \\ \ln t & = \displaystyle \lim_{x \to \infty } \frac{ \frac{1}{1 + \frac{n}{x} } . (n) }{ 1 } \\ \ln t & = \displaystyle \lim_{x \to \infty } n . \frac{1}{1 + \frac{n}{x} } \\ \ln t & = n . \displaystyle \lim_{x \to \infty } \frac{1}{1 + \frac{n}{x} } \\ \ln t & = n . \frac{1}{1 + \frac{n}{ \infty } } \\ \ln t & = n . \frac{1}{1 + 0 } \\ \ln t & = n . 1 \\ \ln t & = n \\ t & = e^n \\ \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x & = e^{n} \end{align} $

Catatan : Untuk rumus 1, 2, dan 8, gunakan rumus dasar $ \begin{align} \displaystyle \lim_{x \to \infty } \left( 1 + \frac{n}{x} \right)^x = e^{n} \end{align} $

$ \clubsuit $ Pembuktian rumus dasar : $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + nx \right)^\frac{1}{x} = e^{n} \end{align} $
*). Pembuktiannya bisa langsung menggunakan rumus dasar 3.
Misalkan $ x = \frac{1}{y} \, $ maka $ y = \frac{1}{x} $
untuk $ x $ menuju nol, maka $ y $ menuju tak hingga.
*). Pembuktiannya :
$ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + nx \right)^\frac{1}{x} & = \displaystyle \lim_{\frac{1}{x} \to \infty } \left( 1 + n. \frac{1}{y} \right)^y \\ & = \displaystyle \lim_{y \to \infty } \left( 1 + \frac{n}{y} \right)^y \, \, \, \, \, \text{(rumus dasar 3)} \\ \lim_{x \to 0 } \left( 1 + nx \right)^\frac{1}{x} & = e^n \end{align} $

Catatan : untuk rumus dasar 4, 5, dan 7 , gunakan rumus dasar $ \begin{align} \displaystyle \lim_{x \to 0 } \left( 1 + nx \right)^\frac{1}{x} = e^{n} \end{align} $

Senin, 23 November 2015

Penerapan Limit pada Kekontinuan Fungsi

         Blog Koma - Sebelumnya kita telah mempelajari "Penerapan Limit pada Laju Perubahan". Kali ini kita akan mempelajari penerapan limit lainnya yaitu Penerapan Limit pada Kekontinuan Fungsi. Suatu fungsi dikatakan kontinu pada suatu titik tertentu (misalkan $ x = a$) jika grafik fungsinya tidak terputus di titik tersebut.

Perhatikan grafik fungsi $ f(x) = \frac{x^2 - 1}{x-1} \, $ berikut,
Dari grafik terlihat bahwa untuk titik $ x = 1 \, $ grafiknya terputus, ini artinya fungsi $ f(x) = \frac{x^2 - 1}{x-1} \, $ tidak kontinu di titik $ x = 1 . \, $ Dilain pihak, selain titik $ x = 1 \, $ , grafik $ f(x) = \frac{x^2 - 1}{x-1} \, $ tidak terputus, sehingga fungsi tersebut dikatakan kontinu di semua titik selain titik $ x = 1 $ .

Penjelasan Penerapan Limit pada Kekontinuan Fungsi
       Untuk menentukan suatu fungsi apakah kontinu atau tidak kontinu di suatu titik tertentu, kita tidak mungkin selalu menggunakan grafiknya secara langsung, karena akan sulit dalam menggambarnya. Nah, untuk memudahkan dalam mengecek kekontinuan fungsi, kita akan menggunakan limit.

Fungsi $ f(x) \, $ dikatakan kontinu di titik $ x = a , \, $ jika memenuhi ketiga syarat berikut,
i). $ f(a) \, $ ada,
ii). $ \displaystyle \lim_{x \to a } f(x) \, $ ada,
iii). $ \displaystyle \lim_{x \to a } f(x) = f(a) $

Keterangan :
i). $ f(a) \, $ ada, maksudnya nilai fungsinya terdefinisi di $ x = a \, $ (bisa dihitung).
ii). $ \displaystyle \lim_{x \to a } f(x) \, $ ada, maksudnya besar limit kiri dan limit kananya adalah sama.
iii). $ \displaystyle \lim_{x \to a } f(x) = f(a) $ , maksudnya nilai limit dan fungsinya sama.
Untuk limit kiri dan limit kanan, lihat materi "Pengertian Limit Fungsi".
Contoh :
1). Tunjukkan fungsi $ f(x) = 2x - 1 \, $ kontinu di titik $ x = 1 $ ?
Penyelesaian :
*). Cek ketiga syarat :
i). Nilai fungsi : $ f(1) = 2.1 - 1 = 1 $
Nilai limit kiri : $ \displaystyle \lim_{x \to 1^{-} } 2x - 1 = 1 $
Nilai limit kanan : $ \displaystyle \lim_{x \to 1^{+} } 2x - 1 = 1 $
ii). Artnya nilai limitnya : $ \displaystyle \lim_{x \to 1 } 2x - 1 = 1 $
iii). $ \displaystyle \lim_{x \to 1 } 2x - 1 = 1 = f(1) $
Karena ketika syarat terpenuhi, maka fungsi $ f(x) = 2x - 1 \, $ kontinu di titik $ x = 1 $ .

2). Apakah fungsi $ f(x) = \frac{x^2 - 1}{x-1} \, $ kontinu di titik $ x = 1 $ ?
Penyelesaian :
*). Cek ketiga syarat :
i). Nilai fungsi : $ f(1) = \frac{1^2 - 1}{1-1} = \frac{0}{0} \, $ . Karena hasilnya $ \frac{0}{0} \, $ maka nilai fungsinya tidak ada atau tidak terdefinisi.
Satu syarat tidak terpenuhi, maka dapat disimpulkan bahwa fungsi $ f(x) = \frac{x^2 - 1}{x-1} \, $ tidak kontinu (diskontinu) di titik $ x = 1 $ .

3). Tentukan titik dimana fungsi $ f(x) = \frac{1}{x^2 - x - 6 } \, $ tidak kontinu. ?
Penyelesaian :
*). Suatu fungsi dikatakan kontinu harus memenuhi ketiga syarat yang ada, jika salah satu saja tidak terpenuhi maka fungsi tersebut sudah dipastikan tidak kontinu. Karena fungsinya dalam bentuk pecahan, maka fungsi pecahan tidak ada nilai atau tidak terdefinisi jika penyebutnya bernilai 0.
*). Penyebut bernilai 0.
$ x^2 - x - 6 = 0 \rightarrow (x - 3)(x+2) = 0 \rightarrow x = 3 \vee x = -2 $ .
Jadi, fungsi $ f(x) = \frac{1}{x^2 - x - 6 } \, $ tidak kontinu pada titik $ x = 3 \, $ dan $ x = -2 $ .

4). Misalkan terdapat fungsi ,
$ f(x) = \left\{ \begin{array}{cc} 3x+7 & , \text{ untuk } x \leq 4 \\ kx - 1 & , \text{ untuk } x > 4 \end{array} \right. $
Tentukan nilai $ k \, $ sehingga $ f(x) \, $ kontinu di $ x = 4 $ . ?
Penyelesaian :
*). Syarat agar fungsi kontinu di $ x = 4 \, $ adalah $ \displaystyle \lim_{x \to 4 } f(x) = f(4) \, $ atau $ \displaystyle \lim_{x \to 4^- } f(x) = \displaystyle \lim_{x \to 4^+ } f(x) = f(4) $ .
*). Nilai fungsi : $ f(4) $
Untuk $ x = 4, \, $ maka fungsinya adalah $ f(x) = 3x+7 $
Sehingga nilai fungsinya : $ f(4) = 3.4 + 7 = 19 $
*). Limit kiri : untuk $ x = 4 \, $ mendekati dari kiri, maka fungsi $ f(x) = 3x + 7 \, $ yang digunakan,
$ \displaystyle \lim_{x \to 4^- } 3x + 7 = 3.4 + 7 = 19 $
*). Limit kanan : untuk $ x = 4 \, $ mendekati dari kanan, maka fungsi $ f(x) = kx - 1 \, $ yang digunakan,
$ \displaystyle \lim_{x \to 4^+ } kx - 1 = k.4 - 1 = 4k - 1 $
*). Menentukan nilai $ k $
$ \begin{align} \displaystyle \lim_{x \to 4^- } f(x) & = \displaystyle \lim_{x \to 4^+ } f(x) \\ 19 & = 4k-1 \\ 4k & = 20 \\ k & = 5 \end{align} $
Jadi, agar fungsi $ f(x) \, $ kontinu, maka nilai $ k \, $ adalah 5.

5). Diketahui fungsi berikut adalah kontinu,
$ f(x) = \left\{ \begin{array}{cc} ax+3 & , \text{ untuk } x \leq 2 \\ x^2 + 1 & , \text{ untuk } 2 < x \leq 4 \\ 5 - bx & , \text{ untuk } x > 4 \\ \end{array} \right. $
Tentukan nilai $ a + b \, $ ?
Penyelesaian :
*). Fungsi $ f(x) \, $ tidak kontinu di titik $ x = 2 \, $ dan $ x = 4 $
*). penyelesaian di titik $ x = 2 $
$ \begin{align} \displaystyle \lim_{x \to 2^- } f(x) & = \displaystyle \lim_{x \to 2^+ } f(x) \\ \displaystyle \lim_{x \to 2^- } ax+3 & = \displaystyle \lim_{x \to 2^+ } x^2 + 1 \\ a.2+3 & = 2^2 + 1 \\ 2a+3 & = 5 \\ 2a & = 2 \\ a & = 1 \end{align} $
*). penyelesaian di titik $ x = 4 $
$ \begin{align} \displaystyle \lim_{x \to 4^- } f(x) & = \displaystyle \lim_{x \to 4^+ } f(x) \\ \displaystyle \lim_{x \to 4^- } x^2 + 1 & = \displaystyle \lim_{x \to 4^+ } 5 - bx \\ 4^2 + 1 & = 5-b.4 \\ 17 & = 5-4b \\ 4b & = 5 - 17 \\ 4b & = -12 \\ b & = -3 \end{align} $
Sehingga nilai $ a + b = 1 + (-3) = -2 $ .
Jadi, nilai $ a + b = -2 $.

Penerapan Limit pada Laju Perubahan

         Blog Koma - Pada artikel ini kita akan pelajari Penerapan Limit pada Laju Perubahan. Fungsi yang digunakan biasanya fungsi aljabar, sehingga untuk memudahkan silahkan baca materi "Penyelesaian Limit Fungsi Aljabar".

Penjelasan Penerapan Limit pada Laju Perubahan
       Misalkan $ y $ adalah suatu besaran yang bergantung pada besaran lain $ x $ . Sehingga, $ y $ adalah fungsi dari $ x $ dan dapat kita tuliskan $ y = f(x) . \, $ Jika $ x $ berubah dari $ x = c $ sampai $ x = c + h , \, $ maka perubahan $ x $ adalah
$ \Delta x = (c+h) - c = h \, \, $ ($ \Delta x \, $ dibaca "delta $ x $ " )
dan perubahan $ y $ adalah $ \Delta y = f(c+h) - f(c) $ .

       Hasil bagi perubahannya : $ \frac{\Delta y}{\Delta x} = \frac{f(c+h) - f(c)}{h} \, $ disebut rerata laju perubahan $ y $ terhadap $ x $ sepanjang interval $[c, c+h] $ , dan ditafsirkan sebagai kemiringan tali busur PQ pada gambar berikut,

       Kita tinjau laju perubahan rerata pada interval yang semakin kecil $[c, c+h] $ , sehingga $ h \, $ mendekati 0. Limit laju perubahan rerata ini disebut laju perubahan sesaat $ y $ terhadap $ x $ saat $ x = c , \, $ yang ditafsirkan sebagai kemiringan garis singgung pada kurva $ y = f(x) $ di $ P(c,f(c)) $ :
Laju perubahan sesaat $ = \displaystyle \lim_{\Delta x \to 0 } \frac{\Delta y}{\Delta x} = \displaystyle \lim_{h \to 0 } \frac{f(c+h) - f(c)}{h} $
Contoh :
Suhu sebuah tungku pembuatan kristal dipergunakan dalam penelitian untuk menentukan bagaimana cara terbaik untuk membuat kristal yang dipergunakan dalam komponen elektronik untuk pesawat ulang-alik. Untuk pembuatan kristal yang baik, suhu harus dikendalikan secara akurat dengan menyesuaikan daya masukan. Hubungan suhu dan daya masukan mengikuti fungsi $ T(w) = 0,1w^2 + 2,155w + 20 \, $ dengan $ T $ adalah suhu dalam $ ^\circ $C, dan $ w $ adalah daya masukan dalam watt.
a). Berapakah laju perubahan suhu terhadap daya masukan $ w $ ? Apa satuannya?
b). Jika daya yang tersedia adalah 1000 watt, kapan laju perubahan terbesar dan kapan laju perubahan terkecil?
Penyelesaian :
*). Diketahui fungsi : $ T(w) = 0,1w^2 + 2,155w + 20 $
*). Menentukan $ T(w+h) $
$ \begin{align} T(w+h) & = 0,1(w+h)^2 + 2,155(w+h) + 20 \\ & = 0,1(w^2 + 2wh+h^2) + 2,155w + 2,155h + 20 \\ & = 0,1w^2 + 0,2wh + 0,1h^2 + 2,155w + 2,155h + 20 \end{align} $
*). Menentukan $ \frac{T(w+h) - T(w)}{h} $
$ \begin{align} \frac{T(w+h) - T(w)}{h} & = \frac{( 0,1(w+h)^2 + 2,155(w+h) + 20 ) - (0,1w^2 + 2,155w + 20)}{h} \\ & = \frac{ 0,2wh + 2,155h + 0,1h^2 }{h} \\ & = 0,2w + 2,155 + 0,1h \end{align} $
*). Menentukan laju perubahan : $ \displaystyle \lim_{h \to 0 } \frac{f(c+h) - f(c)}{h} $
$ \displaystyle \lim_{h \to 0 } \frac{f(c+h) - f(c)}{h} = \displaystyle \lim_{h \to 0 } 0,2w + 2,155 + 0,1h = 0,2w + 2,155 $
Jadi, laju perubahannya adalah $ 0,2w + 2,155 \, $ dengan satuan $ ^\circ $C/watt.

b). Daya yang tersedia 1000 watt. Dari fungsi laju perubahan ( Laju $ = 0,2w + 2,155$), maka laju perubahan terbesar terjadi ketika $ w = 1000 \, $ dan terkecil pada saat $ w = 0 . \, $
Laju perubahan terbesar $ = 0,2w + 2,155 = 0,2.(1000) + 2,155 = 202,155 \, ^\circ $C/watt.
Laju perubahan terkecil $ = 0,2w + 2,155 = 0,2.(0) + 2,155 = 2,155 \, ^\circ $C/watt.

Sabtu, 21 November 2015

Penyelesaian Limit Fungsi dengan Dalil L'Hospital atau Turunan

         Blog Koma - Untuk menyelesaikan limit suatu fungsi yang hasilnya bentuk tak tentu (khususnya $ \frac{0}{0} \, $ ), dapat menggunakan turunan yang dikenal dengan metode L'Hospital. Sebelumnya kita telah belajar "limit fungsi aljabar" dan "limit fungsi trigonometri" yang penyelesaiannya dengan cara pemfaktoran, kali sekawan (merasionalkan), dan menggunakan sifa-sifat limit fungsi trigonometri. Metode L'Hospital ini biasanya lebih mudah digunakan pada limit fungsi aljabar dengan pangkat variabelnya lebih dari 2, namun bisa juga diterapkan pada limit fungsi trigonometri.

         Untuk bisa memudahkan memahami materi Penyelesaian Limit Fungsi dengan L'Hospital atau Turunan , sebelumnya kita harus mempelajari materi yang berkaitan dengan turunan fungsi baik "turunan fungsi aljabar" maupun "turunan fungsi trigonometri". Berikut teori Penyelesaian Limit Fungsi dengan L'Hospital atau Turunan secara ringkas.
gambar rumus_dasar_limit_di_tak_hingga.

Penyelesaian Limit Fungsi dengan Metode L'Hospital atau Menggunakan Turunan
Misalkan ada limit fungsi : $ \displaystyle \lim_{x \to k } \frac{f(x)}{g(x)} = \frac{0}{0} \, $ ,
Maksudnya hasilnya adalah $ \frac{0}{0} \, $ , maka limit fungsi tersebut bisa diselesaikan dengan turunan, yaitu :
$ \displaystyle \lim_{x \to k } \frac{f(x)}{g(x)} = \displaystyle \lim_{x \to k } \frac{f^\prime (x)}{g^\prime (x)} = \displaystyle \lim_{x \to k } \frac{f^{\prime \prime } (x)}{g^{\prime \prime } (x)} $

Catatan : Fungsi tersebut diturunkan sampai hasilnya tidak $ \frac{0}{0} \, $ lagi, artinya jika hasilnya masih $ \frac{0}{0} \, $ maka diturunkan lagi.
Contoh :
1). Tentukan hasil limit fungsi berikut :
a). $ \displaystyle \lim_{x \to 1 } \frac{x^{15} - 1}{2x^2 - 2} \, \, \, \, $ b). $ \displaystyle \lim_{x \to 2 } \frac{x^3 - 2x^2 + 3x - 6}{x^2 -4} \, \, \, \, $ c). $ \displaystyle \lim_{x \to 3 } \frac{\sqrt{3x-5} - 2}{x^3 - 27} $
Penyelesaian :
*). Konsep turunan fungsi aljabar : $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
a). $ \displaystyle \lim_{x \to 1 } \frac{x^{15} - 1}{2x^2 - 2} = \frac{1^{15} - 1}{2.1^2 - 2} = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
$ \begin{align} \displaystyle \lim_{x \to 1 } \frac{x^{15} - 1}{2x^2 - 2} & = \displaystyle \lim_{x \to 1 } \frac{15x^{15-1} - 0}{2.2.x^{2-1} - 0 } \\ & = \displaystyle \lim_{x \to 1 } \frac{15x^{14}}{4x } \\ & = \frac{15.1^{14}}{4.1 } \\ & = \frac{15}{ 4 } \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 1 } \frac{x^{15} - 1}{2x^2 - 2} = \frac{15}{4} $

b). $ \displaystyle \lim_{x \to 2 } \frac{x^3 - 2x^2 + 3x - 6}{x^2 -4} = \frac{2^3 - 2.2^2 + 3.2 - 6}{2^2 -4} = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
$ \begin{align} \frac{x^3 - 2x^2 + 3x - 6}{x^2 -4} & = \frac{3x^2 - 4x + 3}{2x} \\ & = \frac{3.2^2 - 4.2 + 3}{2.2} \\ & = \frac{12 - 8 + 3}{4} \\ & = \frac{7}{4} \end{align} $
Sehingga nilai $ \frac{x^3 - 2x^2 + 3x - 6}{x^2 -4} = \frac{7}{4} $

c). $ \displaystyle \lim_{x \to 3 } \frac{\sqrt{3x-5} - 2}{x^3 - 27} = \frac{\sqrt{3.3-5} - 2}{3^3 - 27} = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
Turunan bentuka akar : $ y = \sqrt{f(x)} \rightarrow y^\prime = \frac{f^\prime (x)}{2\sqrt{f(x)}} $
sehingga : $ y = \sqrt{3x-5} \rightarrow y^\prime = \frac{3}{2\sqrt{3x-5}} $
$ \begin{align} \displaystyle \lim_{x \to 3 } \frac{\sqrt{3x-5} - 2}{x^3 - 27} & = \displaystyle \lim_{x \to 3 } \frac{ \frac{3}{2\sqrt{3x-5}} }{3x^2} \\ & = \frac{ \frac{3}{2\sqrt{3.3-5}} }{3.3^2} \\ & = \frac{ \frac{3}{2\sqrt{4}} }{27} \\ & = \frac{ \frac{3}{2.2} }{27} \\ & = \frac{ \frac{3}{4} }{27} \\ & = \frac{3}{4.27} \\ & = \frac{3}{108} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 3 } \frac{\sqrt{3x-5} - 2}{x^3 - 27} = \frac{3}{108} $

2). Tentukan hasil limit fungsi berikut :
a). $ \displaystyle \lim_{x \to 0 } \frac{ \sin 2x }{ 3x} \, \, \, \, $ b). $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \sin 4x }{\sin x - \cos x} \, \, \, \, $ c). $ \displaystyle \lim_{x \to \frac{1}{2} \pi } \frac{1 - \sin x }{x - \frac{1}{2} \pi} $
Penyelesaian :
*). Konsep turunan fungsi trigonometri :
$ y = \sin x \rightarrow y^\prime = \cos x $
$ y = \cos x \rightarrow y^\prime = \sin x $
$ y = \sin f(x) \rightarrow y^\prime = f^\prime \cos f(x) $
$ y = \cos f(x) \rightarrow y^\prime = - f^\prime \sin f(x) $

a). $ \displaystyle \lim_{x \to 0 } \frac{ \sin 2x }{ 3x} = \frac{ \sin 2. 0 }{ 3.0} = \frac{ \sin 0 }{ 0} = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
Turunan : $ y = \sin 2x \rightarrow y^\prime = 2 \cos 2x $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{ \sin 2x }{ 3x} & = \displaystyle \lim_{x \to 0 } \frac{ 2 \cos 2x }{ 3} \\ & = \frac{ 2 \cos 2.0 }{ 3} \\ & = \frac{ 2 \cos 0 }{ 3} \\ & = \frac{ 2 . 1 }{ 3} \\ & = \frac{ 2 }{ 3} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{ \sin 2x }{ 3x} = \frac{2}{3} $

b). $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \sin 4x }{\sin x - \cos x} = \frac{ \sin 4 . \frac{1}{4} \pi }{\sin \frac{1}{4} \pi - \cos \frac{1}{4} \pi} = \frac{ \sin \pi }{ \frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2} } = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
Turunan : $ y = \sin 4x \rightarrow y^\prime = 4 \cos 4x $
$ \begin{align} \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \sin 4x }{\sin x - \cos x} & = \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{4 \cos 4x }{\cos x - (-\sin x) } \\ & = \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{4 \cos 4x }{\cos x + \sin x } \\ & = \frac{4 \cos 4. \frac{1}{4} \pi }{\cos \frac{1}{4} \pi + \sin \frac{1}{4} \pi } \\ & = \frac{4 \cos \pi }{ \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2} } \\ & = \frac{4 .(-1) }{ \sqrt{2} } \\ & = - \frac{4 }{ \sqrt{2} } \\ & = - \frac{4 }{ \sqrt{2} } \times \frac{\sqrt{2}}{\sqrt{2}} \\ & = - \frac{4 \sqrt{2}}{ 2 } \\ & = - 2\sqrt{2} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \sin 4x }{\sin x - \cos x} = - 2\sqrt{2} $

c). $ \displaystyle \lim_{x \to \frac{1}{2} \pi } \frac{1 - \sin x }{x - \frac{1}{2} \pi} = \frac{1 - \sin \frac{1}{2} \pi }{\frac{1}{2} \pi - \frac{1}{2} \pi} = \frac{1 - 1 }{0} = \frac{0}{0} $
Karena hasilnya $ \frac{0}{0} \, $ , maka bisa menggunakan L'Hospital (diturunkan)
$ \begin{align} \displaystyle \lim_{x \to \frac{1}{2} \pi } \frac{1 - \sin x }{x - \frac{1}{2} \pi} & = \displaystyle \lim_{x \to \frac{1}{2} \pi } \frac{ - \cos x }{1} \\ & = \frac{ - \cos \to \frac{1}{2} \pi }{1} \\ & = \frac{ - 0 }{1} \\ & = 0 \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \frac{1}{2} \pi } \frac{1 - \sin x }{x - \frac{1}{2} \pi} = 0 $

3). Jika diketahui $ \displaystyle \lim_{x \to 4 } \frac{ax+b - \sqrt{x}}{x-4} = \frac{3}{4}, \, $ maka nilai $ a + b = .... $
Penyelesaian :
*). Kita hitung hasil limitnya :
$ \begin{align} \displaystyle \lim_{x \to 4 } \frac{ax+b - \sqrt{x}}{x-4} & = \frac{3}{4} \\ \frac{a.4+b - \sqrt{4}}{4-4} & = \frac{3}{4} \\ \frac{4a+b - 2}{0} & = \frac{3}{4} \\ \infty & \neq \frac{3}{4} \end{align} $
*). Setelah kita substitusi $ x = 4 \, $ diperoleh hasil limitnya tak hingga ($ \infty$) yang tidak sama dengan $ \frac{3}{4} \, $ , ini artinya agar limitnya mempunyai hasil $ \frac{3}{4} \, $ maka limitnya harus diproses lagi, dengan kata lain hasil limitnya harus bentuk tak tentu yaitu $ \frac{0}{0} $ .
Sehingga $ \displaystyle \lim_{x \to 4 } \frac{ax+b - \sqrt{x}}{x-4} = \frac{0}{0} \rightarrow \frac{4a+b - 2}{0} = \frac{0}{0} $
Artinya nilai $ 4a+b - 2 = 0 \rightarrow 4a + b = 2 \, $ .....pers(i) .
*). Kita gunakan metode turunan (L'Hospital),
Turunan : $ y = \sqrt{x} \rightarrow y^\prime = \frac{1}{2\sqrt{x}} $
$ \begin{align} \displaystyle \lim_{x \to 4 } \frac{ax+b - \sqrt{x}}{x-4} & = \frac{3}{4} \, \, \, \, \text{(diturunkan)} \\ \displaystyle \lim_{x \to 4 } \frac{a - \frac{1}{2\sqrt{x}} }{1} & = \frac{3}{4} \\ \displaystyle \lim_{x \to 4 } a - \frac{1}{2\sqrt{x}} & = \frac{3}{4} \\ a - \frac{1}{2\sqrt{4}} & = \frac{3}{4} \\ a - \frac{1}{4} & = \frac{3}{4} \\ a & = \frac{3}{4} + \frac{1}{4} \\ a & = \frac{4}{4} = 1 \end{align} $
Diperoleh : $ a = 1 \, $ , substitusi nilai $ a = 1 \, $ ke pers(i) ,
$ 4a + b = 2 \rightarrow 4.1 + b = 2 \rightarrow b = 2-4 = -2 $
Sehingga nilai $ a + b = 1 + (-2) = -1 $
Jadi, nilai $ a + b = -1 $ .

Soal-soal Latihan Limit Fungsi Tak Hingga

         Blog Koma - Pada artikel ini kita akan belajar mengerjakan Soal-soal Latihan Limit Fungsi Tak Hingga sebagai bahan untuk memantapkan materi "Penyelesaian Limit Tak Hingga". Sebelumnya juga telah dibahas materi "Pengertian Limit Fungsi" dan "Sifat-sifat Limit Fungsi". Berikut soal-soal latihan limit fungsi tak hingga yang bisa kita kerjakan untuk bahan latihan.
         Soal-soal Latihan Limit Fungsi Tak Hingga yang kita sajikan pada artikel ini dari tipe soal yang paling mudah sampai paling sulit. Dengan banyak latihan dan memahami konsep dasar dari limit fungsi tak hingga. Bentuk limit fungsi tak hingga biasanya dibagi menjadi dua yaitu limit dengan fungsi pecahan dan limit pengurangan akar. Masing-masing memiliki cara yang sama, hanya saja yang paling umum adalah bentuk pecahannya.

         Salah satu cara memperdalam konsep limit fungsi tak hingga dengan cara mengerjakan soal-soal latihan limit fungsi tak hingga sebanyak-banyaknya. Mudah-mudahan soal-soal pada artikel ini bisa membantu kita dalam mempelajari limit tak hingga.

Berikut soal-soal latihan limit fungsi tak hingga :
1). $ \displaystyle \lim_{x \to \infty } \left( \frac{3x}{x-1} - \frac{2x}{x+1} \right) $

2). $ \displaystyle \lim_{x \to \infty } \frac{ 2x^3 - 4x + 1 }{ 3x^2 + 5x - 2 } $

3). $ \displaystyle \lim_{x \to \infty } \frac{ -5x^5 - 2x^3 + 5 }{ 3x^9 + 5x^5 - 5 } $

4). $ \displaystyle \lim_{x \to \infty } \frac{ \sqrt{3x^2 + 2x + 2} }{ 2x - 5 } $

5). $ \displaystyle \lim_{x \to \infty } \frac{ \sqrt{3x^2 + 2x + 2} }{ 2x - 5 } $

6). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 + 3} - 2x + 1 $

7). $ \displaystyle \lim_{x \to \infty } 3x - 2 - \sqrt{9x^2 + x + 3} $

8). $ \displaystyle \lim_{x \to \infty } \frac{ 3^x + 2 }{ 2.3^x - 5 } $

9). $ \displaystyle \lim_{x \to \infty } \frac{ 3^{x+2} - 5 }{ 3^{x-1} + 4 } $

10). $ \displaystyle \lim_{x \to \infty } \frac{ 5^{2x} - 5^{x-2} + 1 }{ 5^{2x + 1} + 5^{x+1} - 3 } $

11). $ \displaystyle \lim_{x \to \infty } \frac{ 1 + 2+ 3 + 4+ .... + x }{ 3x^2 - 4x + 1} $

12). $ \displaystyle \lim_{x \to \infty } \frac{ x + \sqrt{4x^2 + \sqrt{x^3 + 2 \sqrt{5x^5}} } }{ 2x - \sqrt[5]{x^5 - x^2 + \sqrt{3x^8} } } $

13). $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 + 4x -1} - \sqrt{x^2 -2x + 5} $

14). $ \displaystyle \lim_{x \to \infty } \sqrt{x+5} - \sqrt{x- 1} $

15). $ \displaystyle \lim_{x \to \infty } \frac{x\sqrt{x} - x - 5}{\sqrt{4x^3} + 4x} $

16). $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 + x(2a+2b) + 4ab} - x $

17). $ \displaystyle \lim_{x \to \infty } \frac{\sqrt{16x^4 - 5x^3 - 3x + 2}}{x^2 - x + 7} $

18). $ \displaystyle \lim_{x \to \infty } \sqrt{(x-p)(x+q)} - x $

       Demikian artikel Soal-soal Latihan Limit Tak Hingga dengan berbagai variasi soalnya. Jika ada masukkan atau pertanyaan tentang soal-soal di atas, silahkan beri komentar di kotak komentar di bawah ini. Terima kasih.

Soal-soal Latihan Limit Fungsi Trigonometri

         Blog Koma - Pada artikel ini kita akan belajar mengerjakan Soal-soal Latihan Limit Fungsi Trigonometri sebagai bahan untuk memantapkan materi "Penyelesaian Limit Fungsi Trigonometri". Sebelumnya juga telah dibahas materi "Pengertian Limit Fungsi" dan "Sifat-sifat Limit Fungsi". Berikut soal-soal latihan limit fungsi trigonometri yang bisa kita kerjakan untuk bahan latihan.
         Soal-soal Latihan Limit Fungsi Trigonometri ini bertujuan agar kita lebih mantap dan lebih mendalam dalam menguasai materi limit fungsi trigonometri. Yang perlu diingat adalah untuk mengerjakan soal-soal limit fungsi trigonometri kita sebaiknya menggunakan sifat-sifat limit fungsi trigonometri agar lebih mudah dalam penyelesaiannya.

         Soal-soal Latihan Limit Fungsi Trigonometri terdiri dari berbagai tipe soal dari yang paling mudah sampai yang paling sulit. Mudah-mudahan dengan bisa mengerjakan semua soal yang ada kita akan lebih memahami dan mampu mengerjakan soal-soalnya dengan baik dan benar. Suatu saat akan kita sajikan pembahasan dari soal-soal limit fungsi trigonometri yang ada pada artikel ini.

Berikut soal-soal latihan limit fungsi trigonometri :
1). $ \displaystyle \lim_{x \to 0 } \frac{\sin \frac{4}{3}x}{\frac{1}{2}x} $

2). $ \displaystyle \lim_{x \to 0 } \frac{2\sin 3x}{5\sin 2x} $

3). $ \displaystyle \lim_{x \to 0 } \frac{3\tan 4x }{4\tan 6x} $

4). $ \displaystyle \lim_{x \to 0 } \frac{2\tan \frac{1}{2}x}{3 \sin \frac{1}{6}} $

5). $ \displaystyle \lim_{x \to 0 } \frac{4\sin 2x }{ 3\tan 8x } $

6). $ \displaystyle \lim_{x \to 0 } \frac{x \sin 2x }{\tan ^2 3x} $

7). $ \displaystyle \lim_{x \to \frac{1}{2}\pi } \frac{ 1 + \cos 2x }{ \cos x } $

8). $ \displaystyle \lim_{x \to \frac{1}{4}\pi } \frac{ \tan x - 1 }{ \cos 2x } $

9). $ \displaystyle \lim_{x \to 0 } \frac{ 1 - \cos 3x }{ 3x \tan \frac{1}{4}x } $

10). $ \displaystyle \lim_{x \to \frac{1}{2}\pi } \frac{ 1 - \sin x }{ x - \frac{1}{2}\pi } $

11). $ \displaystyle \lim_{x \to 45^\circ } \frac{ \cos 2x }{ \cos x - \sin x } $

12). $ \displaystyle \lim_{x \to \infty } 3x . \tan \frac{1}{5x} $

13). Tentukan nilai $ \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \, $ untuk fungsi $ f(x) = \sin x $

14). $ \displaystyle \lim_{x \to \frac{1}{2}\pi } (\csc ^2 x - \csc x \cot x ) $

15). $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ 1 - \tan x }{ \cot 2x } $

16). $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ 2(\sin x - \cos x) }{ 1 - \sin 2x } $

17). $ \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \cos 2x }{ \sqrt{2\cos x - 1 } } $

18). $ \displaystyle \lim_{x \to 0 } \frac{ 1 - \cos x }{ 1 - \cos 2x } $

19). $ \displaystyle \lim_{x \to 0 } \frac{ \sin ^2 3x + 2x \tan x }{ 55x^2 } $

20). $ \displaystyle \lim_{x \to 0 } \frac{ \sin ^2 x - \tan ^2 3 x }{ x^2 + \sin 3x \tan x } $

21). $ \displaystyle \lim_{x \to \infty } x^2 (1 - \cos \frac{2}{x} ) $

22). $ \displaystyle \lim_{x \to 0 } \frac{ x\sin x + \tan ^2 x }{ 1 - \cos 2x } $

23). $ \displaystyle \lim_{x \to 5 } (x-5) \cot \pi x $

24). $ \displaystyle \lim_{x \to 0 } \frac{x^2 + 5x}{\sin 3x} $

25). $ \displaystyle \lim_{x \to -2 } \frac{1 - \cos (x+2)}{x^2 + 4x + 4} $

26). $ \displaystyle \lim_{x \to 0 } \frac{ \tan 3x \sin ^2 4x}{x^2 \sin 8x} $

27). $ \displaystyle \lim_{x \to 0 } \frac{ x(\cos ^2 6x - 1 )}{\sin 2x \tan ^2 3x } $

28). $ \displaystyle \lim_{x \to 1 } \frac{ \sin (1 - \frac{1}{x}) \cos (1 - \frac{1}{x}) }{ x-1 } $

29). $ \displaystyle \lim_{x \to 0 } \frac{1}{x} \left( \frac{\sin ^3 2x}{\cos 2x} + \sin 2x \cos 2x \right) $

30). $ \displaystyle \lim_{x \to \infty } 3x^2 (\sec \frac{2}{x} - 1 ) $

       Demikian artikel Soal-soal Latihan Limit Fungsi Trigonometri dengan berbagai variasi soalnya. Jika ada masukkan atau pertanyaan tentang soal-soal di atas, silahkan beri komentar di kotak komentar di bawah ini. Terima kasih.

Jumat, 20 November 2015

Penyelesaian Limit Tak Hingga

         Blog Koma - Pada artikel kali ini kita akan membahas materi Penyelesaian Limit Tak Hingga. Limit tak hingga ini maksudnya bisa hasil limitnya adalah tak hingga ($ \infty $) atau limit dimana variabelnya menuju tak hingga ($ x \to \infty $). Untuk memudahkan, silahkan juga baca materi "Pengertian Limit Fungsi" dan "Penyelesaian Limit Fungsi Aljabar". Khusus pada limit tak hingga pada artikel ini kita akan lebih menitik beratkan pada fungsi aljabar saja. Untuk limit tak hingga fungsi trigonometri akan kita bahas pada artikel lain secara khusus dan lebih mendalam.

Hasil Limitnya Tak hingga
       Suatu limit hasilnya tak hingga ($\infty$) jika hasil limitnya semakin membesar menuju tak hingga, bisanya terjadi ketika pembaginya adalah 0 ($ \frac{1}{0} = \infty $ ) .

Berikut teorinya :
$ \displaystyle \lim_{x \to \, (+0) } \frac{1}{x^n} = + \infty \, $ dan $ \, \displaystyle \lim_{x \to \, (-0) } \frac{1}{x^n} = \left\{ \begin{array}{cc} +\infty & , \text{ untuk } \, n \, \text{ genap} \\ -\infty & , \text{ untuk } \, n \, \text{ ganjil} \end{array} \right. $
dengan $ n \, $ bilangan asli.

Catatan : Jika pangkatnya genap ($n \, $ genap) maka hasilnya selalu positif.
Contoh :
1). Tentukan nilai $ \displaystyle \lim_{x \to 2 } \frac{1}{(x-2)^2} \, $ ?
Penyelesaian :
*). Berikut grafik dari fungsi $ f(x) = \frac{1}{(x-2)^2} $
Dari tabel terlihat bahwa untuk $ x \, $ mendekati 2, maka hasil fungsinya (nilai $y $ ) semakin besar menuju tak hingga.
Jadi, hasil dari $ \displaystyle \lim_{x \to 2 } \frac{1}{(x-2)^2} = \infty $

2). Tentukan nilai limit bentuk berikut :
a). $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{(x-5)^5} \, \, \, $ b). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^8} \, \, \, $ c). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^7} $
Penyelesaian :
a). Karena $ x \to 5^+ \, $ (artinya $ x \, $ mendekati 5 dari kanan, sehingga nilai $ x - 5 \, $ positif.
$ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{(x-5)^5} = \frac{5+2}{(5^+ - 5)^5} = \frac{7}{(+0)^5} = + \infty $

b). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^8} = \frac{3}{(3^- - 3)^8 } = \frac{3}{(-0)^8} = \frac{3}{0} = +\infty $

c). $ \displaystyle \lim_{x \to 3^- } \frac{x}{(x-3)^7} =\frac{3}{(3^- - 3)^7 } = \frac{3}{(-0)^7} = \frac{3}{-0} = -\infty $

Penyelesaian Limit di Tak Hingga
       Untuk menyelesaikan limit menuju tak hingga ($ x \to \infty $ ), kita gunakan limit dasarnya yaitu : $ \, \, \displaystyle \lim_{x \to \infty } \frac{a}{x^n} = 0 $
dengan $ a \, $ bilangan real dan $ n \, $ bilangan asli.

       Artinya kita harus mengarahkan bentuk limit di tak hingga menjadi rumus dasar di atas dengan cara :
i). Buat fungsinya menjadi bentuk pecahan, jika bentuknya dalam akar maka kalikan dengan bentuk sekawannya (merasionalkan).
ii). Bagi variabelnya dengan pangkat tertinggi.
Contoh :
3). Tentukan hasil limit di tak hingga berikut :
a). $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b). $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c). $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $
d). $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $
Penyelesaian :
a). Bagi dengan $ x^3 \, $ untuk pembilang dan penyebutnya.
$ \begin{align} \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3 + 3x^2 + 5}{x^3}}{\frac{5x^3 - 4x + 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{5}{x^3} }{\frac{5x^3 }{x^3} - \frac{ 4x }{x^3} + \frac{ 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{3}{x} + \frac{5}{x^3} }{5 - \frac{ 4 }{x^2} + \frac{ 1}{x^3} } \\ & = \frac{ 2 + \frac{3}{\infty} + \frac{5}{\infty ^3} }{5 - \frac{ 4 }{\infty ^2} + \frac{ 1}{\infty ^3} } \\ & = \frac{ 2 + 0 + 0 }{5 - 0 + 0 } \\ & = \frac{ 2 }{5 } \\ \end{align} $
Sehingga hasilnya $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{ 2 }{5 } $

b). Bagi dengan $ x^8 \, $ untuk pembilang dan penyebutnya,
$ \begin{align} \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} & = \displaystyle \lim_{x \to \infty } \frac{\frac{-2x^2 - 5}{x^8}}{\frac{5x^8 - 4x + 3}{x^8} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{-2}{x^6} - \frac{5}{x^8} }{ 5 - \frac{4}{x^7} + \frac{3}{x^8} } \\ & = \frac{ \frac{-2}{\infty ^6} - \frac{5}{\infty ^8} }{ 5 - \frac{4}{\infty ^7} + \frac{3}{\infty^8} } \\ & = \frac{ 0 - 0 }{ 5 - 0 + 0 } \\ & = \frac{ 0 }{ 5 } \\ & = 0 \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = 0 $

c). Bagi dengan $ x^5 \, $ untuk pembilang dan penyebutnya,
$ \begin{align} \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } & = \displaystyle \lim_{x \to \infty } \frac{\frac{x^5 - 2x^3 + 5x - 1}{x^5}}{\frac{3x^2 - 4x + 1 }{x^5}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 1 - \frac{2}{x^2} + \frac{5}{x^4} - \frac{1}{x^5} }{ \frac{3}{x^3} - \frac{4}{x^4} + \frac{1}{x^5} } \\ & = \frac{ 1 - \frac{2}{\infty ^2} + \frac{5}{\infty ^4} - \frac{1}{\infty ^5} }{ \frac{3}{\infty ^3} - \frac{4}{\infty ^4} + \frac{1}{\infty ^5} } \\ & = \frac{ 1 - 0 + 0 - 0 }{ 0 - 0 + 0 } \\ & = \frac{ 1 }{ 0} \\ & = \infty \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \infty $


d). Bagi dengan $ x \, $ untuk pembilang dan penyebutnya,
$\begin{align} \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x + 1}{x}}{ \frac{\sqrt{9x^2 + 2x - 7}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \frac{\sqrt{9x^2 + 2x - 7}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{\frac{9x^2 + 2x - 7}{x^2} } } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{ 9 + \frac{2}{x} - \frac{7}{x^2} } } \\ & = \frac{ 2 + \frac{1}{\infty} }{ \sqrt{ 9 + \frac{2}{\infty} - \frac{7}{\infty ^2} } } \\ & = \frac{ 2 + 0 }{ \sqrt{ 9 + 0 - 0 } } \\ & = \frac{ 2 }{ \sqrt{ 9 } } \\ & = \frac{ 2 }{3} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \frac{ 2 }{3} $

e). Kali sekawan agar terbentuk pecahan dan bagi $ x $
$ \begin{align} & \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \times \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ (4x^2 +2x-3) - (4x^2 - x + 3) }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3x - 6 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{ 3x - 6 }{x}}{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} }{\sqrt{x^2}} + \frac{ \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \sqrt{4 +\frac{2}{x} - \frac{3}{x^2} } + \sqrt{4 - \frac{1}{x} + \frac{3}{x^2}} } \\ & = \frac{ 3 - \frac{6}{\infty} }{ \sqrt{4 +\frac{2}{\infty} - \frac{3}{\infty ^2} } + \sqrt{4 - \frac{1}{\infty} + \frac{3}{\infty ^2}} } \\ & = \frac{ 3 - 0}{ \sqrt{4 + 0 - 0 } + \sqrt{4 - 0 + 0 } } \\ & = \frac{ 3 }{ \sqrt{4 } + \sqrt{4 } } \\ & = \frac{ 3 }{ 2 + 2 } \\ & = \frac{ 3 }{ 4 } \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{ 3 }{ 4 } $

Penyelesaian Limit di Tak Hingga Yang lebih praktis
       Berikut cara menyelesaikan limit di tak hingga yang lebih mudah :

$\clubsuit $ Limit tak hingga pecahan :
Misalkan fungsinya $ f(x) = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ g(x) = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya :
$ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n < m \\ = \frac{a}{b} & & , \text{untuk } n = m \\ = \frac{a}{0} & = \infty & , \text{untuk } n > m \end{array} \right. $
Catatan : Ambil koefisien pangkat tertingginya.

$\clubsuit $ Limit tak hingga bentuk akar
*). Bentuk pertama,
$ \displaystyle \lim_{x \to \infty } \sqrt{ax^2 + bx + c } - \sqrt{ax^2 + px + q } = \frac{b-p}{2\sqrt{a}} $

*). Bentuk kedua,
$ \displaystyle \lim_{x \to \infty } \sqrt{ax^n + bx^\frac{n}{2} + c } - \sqrt{ax^n + px^\frac{n}{2} + q } = \frac{b-p}{2\sqrt{a}} $
Pangkat didepan adalah dua kali pangkat kedua dan nilai $ a \, $ sama pada kedua akar.
Contoh :
4). Tentukan hasil limit di tak hingga dari soal nomor 3 di atas,
a). $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b). $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c). $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $
d). $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $
f). $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} $
Penyelesaian :
a). Pangkat tertingginya $ x ^3 \, $ , artinya ambil koefisien $ x^3 $ ,
$ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{2}{5} $

b). Pangkat tertingginya $ x^8 \, $ , artinya ambil koefisien $ x^8 \, $,
$ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = \displaystyle \lim_{x \to \infty } \frac{0x^8-2x^2 - 5}{5x^8 - 4x + 3} = \frac{0}{5} = 0 $
c). Pangkat tertingginya $ x^5 \, $ , artinya ambil koefisien $ x^5 $ ,
$ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{0x^5 + 3x^2 - 4x + 1 } = \frac{1}{0} = \infty $
d). Pangkat tertingginya $ x \, $ , artinya ambil koefisien $ x $ ,
$ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 } } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ 3x } = \frac{2}{3} $
e). $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{b-p}{2\sqrt{a}} = \frac{2-(-1)}{2\sqrt{4}} = \frac{3}{4} $
f). $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} = \frac{b-p}{2\sqrt{a}} = \frac{3-5}{2\sqrt{9}} = \frac{-2}{6} = - \frac{1}{3} $

5). Tentukan hasil limit tak hingga berikut ini,
a). $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) $
b). $ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } $
c). $ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} $
Penyelesaian :
a). Ubah terlebih dulu sehingga keduanya membentuk akar.
$ \begin{align} \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{(x + 2)^2} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x^2 + 4x + 4} \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-5-4}{2\sqrt{1}} \\ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - (x + 2) & = \frac{-9}{2} \end{align} $

b). Ubah terlebih dulu sehingga keduanya membentuk akar.
$ \begin{align} \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \displaystyle \lim_{x \to \infty } (2x - 3) - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{(2x - 3)^2} - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2-12x + 9} - \sqrt{4x^2 +x - 7 } \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-12-1}{2\sqrt{4}} \\ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \frac{-13}{4} \end{align} $

c). Misalkan $ y = 5^x , \, $ untuk $ x \, $ menuju tak hingga, maka $ y \, $ juga menuju tak hingga, kemudian ambil koefisien pangkat tertingginya
$ \begin{align} \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^{x+2} - 7} \\ & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^x . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{y . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{25y - 7} \\ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \frac{1}{25} \end{align} $

   Silahkan teman-teman juga simak dan pelajari materi limit tak hingga dengan fungsi trigonometri yaitu pada artkel "Limit Tak Hingga Fungsi Trigonometri".Selain itu, ada juga kegunaan dari limit fungsi tak hingga adalah untuk menentukan persamaan asimtot mendatar suatu fungsi.

Rabu, 18 November 2015

Pembuktian Sifat-sifat Limit Fungsi Trigonometri

         Blog Koma - Sebelumnya telah di poskan materi "penyelesaian limit fungsi trigonometri" dengan menggunakan sifat-sifat limit fungsi trigonometri. Kali ini kita akan pelajari Pembuktian Sifat-sifat Limit Fungsi Trigonometri yang sangat berguna pada limit fungsi trigonometri.

         Pembuktian Sifat-sifat Limit Fungsi Trigonometri sangat penting bagi kita, karena jika sifat-sifat limit fungsi trigonometri tersebut tidak benar maka hasil limit fungsi trigonometrinya juga tidak akan benar, sehingga kita pastikan sifat-sifat tersebut benar dengan cara membuktikannya. Untuk pembuktiannya memang tidak mudah karena rumusnya berkaitan langsung dengan rumus-rumus trigonometri, tapi rumus-rumus yang dibutuhkan sudah kami daftarkan di artikel ini. Semoga pembuktian sifat-sifat limit fungsi aljabar ini bisa bermanfaat bagi kita dalam mempelajari limit fungsi trigonometri.

Teori-teori yang dibutuhkan dalam pembuktian
       Berikut beberapa teori yang dibuthkan dalam pembuktian sifat-sifat limit fungsi trigonometri :

$ \spadesuit $ Teorema Apit
Misalkan $ f, g, \, $ dan $ h \, $ fungsi yang terdefinisi pada interval terbuka $ I $ yang memuat $ a \, $ kecuali mungkin di $ a \, $ itu sendiri, sehingga $ f(x) \leq g(x) \leq h(x) \, $ untuk setiap $ x \in I , \, x \neq a . \, $ Jika $ \displaystyle \lim_{x \to a } f(x) = \displaystyle \lim_{x \to a } h(x) = L , \, $ maka $ \displaystyle \lim_{x \to a } g(x) = L $ .
Atau penulisannya :
$ \begin{align} \displaystyle \lim_{x \to a } f(x) \leq & \displaystyle \lim_{x \to a } g(x) \leq \displaystyle \lim_{x \to a } h(x) \\ L \leq & \displaystyle \lim_{x \to a } g(x) \leq L \end{align} $
Artinya nilai $ \displaystyle \lim_{x \to a } g(x) = L $

$ \spadesuit $ Luas Segitiga
Luas segitiga $ = \frac{1}{2} \times \, $ alas $ \, \times \, $ tinggi .

$ \spadesuit $ Luas Juring lingkaran :
Luas juring AOB $ = \frac{\angle AOB}{2\pi } . \pi r^2 = \frac{1}{2} . \angle AOB . r^2 $

Pembuktian Sifat-sifat limit fungsi Trigonometri
Perhatikan gambar berikut :
*). Perhatikan segitiga BOC : $ \angle BOC = x $
$ \sin x = \frac{BC}{OB} \rightarrow \sin x = \frac{BC}{r} \rightarrow BC = r \sin x $
$ \cos x = \frac{OC}{OB} \rightarrow \cos x = \frac{OC}{r} \rightarrow OC = r \cos x $
*). Perhatikan segitiga AOB : $ \angle AOD = x $
$ \tan x = \frac{AD}{OA} \rightarrow \tan x = \frac{AD}{r} \rightarrow AD = r \tan x $
*). Kita hitung luas segitiga BOC, Luas juring AOB, dan luas segitiga AOD
$ \begin{align} \text{Luas BOC } = \frac{1}{2} . OC . BC = \frac{1}{2}. r \cos x . r \sin x = \frac{1}{2}r^2 \cos x \sin x \end{align} $
$ \begin{align} \text{Luas juring AOB } = \frac{1}{2} . \angle AOB . r^2 = \frac{1}{2} x r^2 \end{align} $
$ \begin{align} \text{Luas AOD } = \frac{1}{2} . OA . AD = \frac{1}{2}. r . r \tan x = \frac{1}{2} r^2 \tan x \end{align} $

*). Pembuktian sifat-sifat limit fungsi trigonometri :
Dari gambar di atas terlihat bahwa luas segitiga BOC lebih kecil dari luas juring AOB dan keduanya lebih kecil dari luas segitiga AOD.

$ \begin{align} \text{Luas BOC } < \, & \text{ Luas juring AOB } < \, \text{ Luas AOD } \\ \frac{1}{2}r^2 \cos x \sin x < \, & \frac{1}{2} x r^2 < \frac{1}{2} r^2 \tan x \, \, \, \, \text{ (bagi } \frac{1}{2}r^2 ) \\ \frac{\frac{1}{2}r^2 \cos x \sin x }{\frac{1}{2}r^2} < \, & \frac{\frac{1}{2} x r^2 }{\frac{1}{2}r^2} < \frac{ \frac{1}{2} r^2 \tan x }{\frac{1}{2}r^2} \\ \cos x \sin x < \, & x < \tan x \, \, \, \, \, \text{....pers(i)} \\ \cos x \sin x < \, & x < \tan x \, \, \, \, \, \text{(bagi } \sin x ) \\ \frac{\cos x \sin x }{\sin x} < \, & \frac{ x }{\sin x} < \frac{ \tan x }{\sin x } \\ \cos x < \, & \frac{ x }{\sin x} < \frac{ \frac{\sin x}{\cos x} }{\sin x } \\ \cos x < \, & \frac{ x }{\sin x} < \frac{1}{\cos x} \\ \displaystyle \lim_{x \to 0 } \cos x < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} < \displaystyle \lim_{x \to 0 } \frac{1}{\cos x} \\ \cos 0 < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} < \frac{1}{\cos 0} \\ 1 < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} < \frac{1}{1} \\ 1 < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} < 1 \end{align} $

Berdasarkan Teorema Apit, dari $ 1 < \, \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} < 1 \, $ berlaku $ \, \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} = 1 $
Sehingga terbukti : $ \, \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} = 1 $

*). Pembuktian bentuk : $ \, \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ x} = 1 $
Gunakan sifat-sifat Limit, silahkan baca materinya pada "Sifat-sifat Limit Fungsi".
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} & = 1 \\ \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} & = \displaystyle \lim_{x \to 0 } 1 \\ \frac{1}{\displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} } & = \frac{1}{ \displaystyle \lim_{x \to 0 } 1 } \\ \displaystyle \lim_{x \to 0 } \frac{1}{ \frac{ x }{\sin x} } & = \displaystyle \lim_{x \to 0 } \frac{1}{ 1 } \\ \displaystyle \lim_{x \to 0 } \frac{\sin x}{ x} & = \displaystyle \lim_{x \to 0 } 1 \\ \displaystyle \lim_{x \to 0 } \frac{\sin x}{ x} & = 1 \end{align} $
Sehingga terbukti : $ \displaystyle \lim_{x \to 0 } \frac{\sin x}{ x} = 1 $

*). Pembuktian bentuk : $ \, \displaystyle \lim_{x \to 0 } \frac{ x }{ \tan x} = 1 $
Dari pers(i) di atas : $ \cos x \sin x < \, x < \tan x \, $ dibagi dengan $ \tan x $

$ \begin{align} \cos x \sin x < \, & x < \tan x \\ \frac{\cos x \sin x }{\tan x} < \, & \frac{ x }{\tan x} < \frac{ \tan x }{\tan x} \\ \frac{\cos x \sin x }{\frac{\sin x}{\cos x}} < \, & \frac{ x }{\tan x} < 1 \\ \cos ^2 x < \, & \frac{ x }{\tan x} < 1 \\ \displaystyle \lim_{x \to 0 } \cos ^2 x < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} < \displaystyle \lim_{x \to 0 } 1 \\ \cos ^2 0 < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} < 1 \\ 1 < \, & \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} < 1 \end{align} $

Berdasarkan Teorema Apit, dari $ 1 < \, \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} < 1 \, $ berlaku $ \, \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} = 1 $
Sehingga terbukti : $ \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} = 1 $

*). Pembuktian bentuk : $ \displaystyle \lim_{x \to 0 } \frac{ \tan x }{ x} = 1 $
Gunakan juga sifat-sifat limit fungsi :
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} & = 1 \\ \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} & = \displaystyle \lim_{x \to 0 } 1 \\ \frac{1}{\displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} } & = \frac{1}{ \displaystyle \lim_{x \to 0 } 1 } \\ \displaystyle \lim_{x \to 0 } \frac{1}{ \frac{ x }{\tan x} } & = \displaystyle \lim_{x \to 0 } \frac{1}{ 1 } \\ \displaystyle \lim_{x \to 0 } \frac{ \tan x }{ x} & = \displaystyle \lim_{x \to 0 } 1 \\ \displaystyle \lim_{x \to 0 } \frac{ \tan x }{ x} & = 1 \end{align} $
Sehingga terbukti : $ \displaystyle \lim_{x \to 0 } \frac{ \tan x }{ x} = 1 $

*). Pembuktian bentuk : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} = 1 $
Berdasarkan : $ \displaystyle \lim_{x \to 0 } \frac{\sin x}{ x} = 1 , \, $ berlaku juga untuk $ \displaystyle \lim_{y \to 0 } \frac{\sin y}{ y} = 1 $

Misalkan $ y = ax \, $ , untuk $ x \, $ mendekati 0, maka $ y \, $ juga mendekati 0.

SUbstitusi bentuk $ ax = y $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} & = \displaystyle \lim_{ax \to a.0 } \frac{\sin ax}{ ax} \\ & = \displaystyle \lim_{ax \to 0 } \frac{\sin ax}{ ax} \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin y}{ y} \\ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} & = 1 \end{align} $
Sehingga terbukti : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} = 1 $

*). Pembuktian bentuk : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ bx} = \frac{a}{b} $
Berdasarkan : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} = 1 $

$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ bx} & = \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ bx} \times \frac{ax}{ax} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} \times \frac{ax}{bx} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ ax} \times \frac{a}{b} \\ & = 1 \times \frac{a}{b} \\ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ bx} & = \frac{a}{b} \end{align} $
Sehingga terbukti : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax}{ bx} = \frac{a}{b} $

Catatan : Untuk yang lainnya caranya sama saja pembuktiannya.

Penyelesaian Limit Fungsi Trigonometri

         Blog Koma - Setelah mempelajari materi "penyelesaian limit fungsi aljabar", kali ini kita akan lanjutkan materi limit untuk penyelesaian limit fungsi trigonometri. Disini kita akan melibatkan fungsi trigonometri, sehingga kita harus mempelajari materi yang berkaitan dengan trigonometri. Persamaan trigonometri yang biasa dipakai pada limit adalah persamaan identitas trigonometri yang bisa dibaca pada artikel "Perbandingan Trigonometri pada Segitiga Siku-Siku" , "rumus trigonometri untuk penjumlahan dan pengurangan", dan "rumus trigonometri jumlah dan selisih dua sudut".

         Penyelesaian limit fungsi trigonometri biasanya dilakukan dengan substitusi terlebih dahulu. Jika hasilnya bentuk tak tentu, maka kita lanjutkan prosesnya dengan cara pemfaktoran, terkadang kalikan bentuk sekawannya, dan menggunakan sifat-sifat limit trigonometri, serta bisa menggunakan turunan. Bentuk tentu dan bentuk tak tentu hasil limit suatu fungsi bisa dibaca lebih lanjut pada artikel "Penyelesaian Limit Fungsi Aljabar". Soal-soal yang biasanya adalah soal-soal dengan hasil limitnya bentuk tak tentu yang akan kita selesaikan dengan menggunakan sifat-sifat limit trigonometri.

Sifat-sifat limit fungsi Trigonometri
       Untuk menyelesaikan limit fungsi trigonometri salah satu caranya adalah menggunakan sifat-sifat limit fungsi trigonometri yaitu :

$\clubsuit $ Sifat-sifat limit fungsi trigonometri paling dasar
i). $ \displaystyle \lim_{x \to 0 } \frac{\sin x }{x} = 1 , \, \, $ berlaku juga $ \, \, \displaystyle \lim_{x \to 0 } \frac{\sin ax }{ax} = 1 $
ii). $ \displaystyle \lim_{x \to 0 } \frac{ x }{\sin x} = 1 , \, \, $ berlaku juga $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\sin ax} = 1 $
iii). $ \displaystyle \lim_{x \to 0 } \frac{\tan x }{x} = 1 , \, \, $ berlaku juga $ \, \, \displaystyle \lim_{x \to 0 } \frac{\tan ax }{ax} = 1 $
iv). $ \displaystyle \lim_{x \to 0 } \frac{ x }{\tan x} = 1 , \, \, $ berlaku juga $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\tan ax} = 1 $

$\clubsuit $ Sifat-sifat limit fungsi trigonometri Lebih Umum
i). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\sin bx} = \frac{a}{b} $
ii). $ \displaystyle \lim_{x \to 0 } \frac{\tan ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\tan bx} = \frac{a}{b} $
iii). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\sin bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\tan bx} = \frac{a}{b} $
iv). $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\tan bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\sin bx} = \frac{a}{b} $

Catatan : Untuk bentuk fungsi $ cos $, maka harus diubah dulu menjadi bentuk $ sin $ agar bisa menggunakan sifat-sifat limit fungsi trigonometri. Untuk pembuktian sifat-sifat di atas, silahkan baca pada artikel "pembuktian sifat-sifat limit fungsi trigonometri".
Contoh :
1). Tentukan nilai limit fungsi trigonometri berikut :
a). $ \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} \, \, \, $ b). $ \displaystyle \lim_{x \to 0 } \frac{ 2x }{3 \sin 5 x} \, \, \, $ c). $ \displaystyle \lim_{x \to 0 } \frac{ 7\tan 2x }{ 4x} \, \, \, $ d). $ \displaystyle \lim_{x \to 0 } \frac{ 2x }{ 9\tan 2x} $
Penyelesaian :
a). Kita menggunakan dua cara :
Cara I : Menggunakan sifat Dasar, $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{ax} = 1 $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} & = \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} \times \frac{3x}{3x} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{3x} \times \frac{3x}{5x} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{3x} \times \frac{3}{5} \\ & = 1 \times \frac{3}{5} \\ & = \frac{3}{5} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} = \frac{3}{5} $

Cara II : Menggunakan sifat umum , $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{bx} = \frac{a}{b} $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} & = \frac{3}{5} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{5x} = \frac{3}{5} $

Catatan : Untuk soal sisanya kita menggunakan sifat umum saja.

b). $ \displaystyle \lim_{x \to 0 } \frac{ 2x }{3 \sin 5 x} = \displaystyle \lim_{x \to 0 } \frac{ 2x }{\sin 5 x} \times \frac{1}{3} = \frac{2}{5} \times \frac{1}{3} = \frac{2}{15} $

c). $ \displaystyle \lim_{x \to 0 } \frac{ 7\tan 2x }{ 4x} = \displaystyle \lim_{x \to 0 } 7 \times \frac{ \tan 2x }{ 4x} = 7 \times \frac{2}{4} = \frac{7}{2} $

d). $ \displaystyle \lim_{x \to 0 } \frac{ 2x }{ 9\tan 2x} = \displaystyle \lim_{x \to 0 } \frac{ 2x }{ \tan 2x} \times \frac{1}{9} = \frac{2}{2} \times \frac{1}{9} = \frac{1}{9} $

2). Tentukan penyelesaian limit fungsi trigonometri berikut :
a). $ \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{\sin 3x} \, \, \, $ b). $ \displaystyle \lim_{x \to 0 } \frac{\tan 6x }{\tan 2x} \, \, \, $ c). $ \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{\tan 2x} \, \, \, $ d). $ \displaystyle \lim_{x \to 0 } \frac{\tan 4x }{\sin 8x} \, \, \, $ e). $ \displaystyle \lim_{x \to 0 } 3x . \cot 7x $
Penyelesaian :
a). Kita menggunakan dua cara,
Cara I : Menggunakan sifat dasar,
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{\sin 3x} & = \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{\sin 3x} . \frac{2x}{2x} . \frac{3x}{3x} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{2x} . \frac{3x }{\sin 3x}. \frac{2x}{3x} \\ & = \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{2x} . \frac{3x }{\sin 3x}. \frac{2}{3} \\ & = 1 . 1 . \frac{2}{3} \\ & = \frac{2}{3} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{\sin 3x} = \frac{2}{3} $

Cara II : Mengunakan sifat umum : $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\sin bx} = \frac{a}{b} $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\sin 2x }{\sin 3x} = \frac{2}{3} \end{align} $

Catatan : Untuk soal sisanya kita menggunakan sifat umum saja.

b). $ \displaystyle \lim_{x \to 0 } \frac{\tan 6x }{\tan 2x} = \frac{6}{2} = 3 $

c). $ \displaystyle \lim_{x \to 0 } \frac{\sin 3x }{\tan 2x} = \frac{3}{2} $

d). $ \displaystyle \lim_{x \to 0 } \frac{\tan 4x }{\sin 8x} = \frac{4}{8} = \frac{1}{2} $

e). $ \displaystyle \lim_{x \to 0 } 3x . \cot 7x = \displaystyle \lim_{x \to 0 } 3x . \frac{1}{\tan 7x} = \displaystyle \lim_{x \to 0 } \frac{3x }{\tan 7x} = \frac{3}{7} $
Ingat : $ \cot A = \frac{1}{\tan A } $

3). Tentukan nilai limit fungsi trigonometri di bawah ini :
a). $ \displaystyle \lim_{x \to 0 } \frac{2 - 2 \cos 2x }{3x^2} \, \, \, $ b). $ \displaystyle \lim_{x \to 0 } \frac{\cos 2x }{x - \frac{\pi}{4}} \, \, \, $ c). $ \displaystyle \lim_{x \to 0 } \frac{1 - \cos x }{x \sin 2x} \, \, \, $ d). $ \displaystyle \lim_{x \to 0 } \frac{3x + \sin 2 x }{5x} $
Penyelesaian :
Kita langsung menggunakan sifat umum dan persamaan trigonometri.
a). Ingat rumus : $ \cos 2x = 1 - 2\sin ^2 x $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{2 - 2 \cos 2x }{3x^2} & = \displaystyle \lim_{x \to 0 } \frac{2(1 - \cos 2x ) }{3x . x} \\ & = \displaystyle \lim_{x \to 0 } \frac{2(1 - [ 1 - 2\sin ^2 x ] ) }{3x . x} \\ & = \displaystyle \lim_{x \to 0 } \frac{2(1 - 1 + 2\sin ^2 x ) }{3x . x} \\ & = \displaystyle \lim_{x \to 0 } \frac{2(2\sin ^2 x ) }{3x . x} \\ & = \displaystyle \lim_{x \to 0 } \frac{4\sin x \sin x }{3x . x} \\ & = \displaystyle \lim_{x \to 0 } 4. \frac{\sin x }{3x } . \frac{\sin x }{ x} \\ & = 4. \frac{1 }{3 } . 1 \\ & = \frac{ 4 }{3 } \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{2 - 2 \cos 2x }{3x^2} = \frac{ 4 }{3 } $

b). Ingat rumus : $ \cos 2x = 1 - 2\sin ^2 x \, $ dan $ \, \cos (\frac{\pi}{2} + A) = - \sin A $
Misalkan : $ p = x - \frac{\pi}{4} \rightarrow x = p + \frac{\pi}{4} $
Untuk $ x \, $ mendekati $ \frac{\pi}{4} \, $ maka $ p \, $ mendekati 0.
Substitusi permisalan di atas semua ke limintnya :
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\cos 2x }{x - \frac{\pi}{4}} & = \displaystyle \lim_{x - \frac{\pi}{4} \to 0 } \frac{\cos 2x }{x - \frac{\pi}{4}} \\ & = \displaystyle \lim_{p \to 0 } \frac{\cos 2(p + \frac{\pi}{4}) }{p} \\ & = \displaystyle \lim_{p \to 0 } \frac{\cos ( \frac{\pi}{2} + 2p ) }{p} \\ & = \displaystyle \lim_{p \to 0 } \frac{ - \sin 2p }{p} \\ & = - \frac{2}{1} \\ & = - 2 \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{\cos 2x }{x - \frac{\pi}{4}} = -2 $


c). Ingat rumus : $ \cos px = 1 - 2\sin ^2 \frac{p}{2} x $
Sehingga : $ \cos x = \cos 1.x = 1 - 2\sin ^2 \frac{1}{2} x $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{1 - \cos x }{x \sin 2x} & = \displaystyle \lim_{x \to 0 } \frac{1 - (1 - 2\sin ^2 \frac{1}{2} x ) }{x \sin 2x} \\ & = \displaystyle \lim_{x \to 0 } \frac{1 - 1 + 2\sin ^2 \frac{1}{2} x }{x \sin 2x} \\ & = \displaystyle \lim_{x \to 0 } \frac{ 2\sin ^2 \frac{1}{2} x }{x \sin 2x} \\ & = \displaystyle \lim_{x \to 0 } \frac{ 2\sin \frac{1}{2} x . \sin \frac{1}{2} x }{x \sin 2x} \\ & = \displaystyle \lim_{x \to 0 } 2 . \frac{ \sin \frac{1}{2} x }{x } . \frac{ \sin \frac{1}{2} x }{\sin 2x} \\ & = 2 . \frac{ \frac{1}{2} }{1} . \frac{ \frac{1}{2} }{ 2 } \\ & = 2 . \frac{1}{2}. \frac{1}{4} \\ & = \frac{1}{4} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{1 - \cos x }{x \sin 2x} = \frac{1}{4} $

d). $ \displaystyle \lim_{x \to 0 } \frac{3x + \sin 2 x }{5x} = \displaystyle \lim_{x \to 0 } \left( \frac{3x }{5x} + \frac{ \sin 2 x }{5x} \right) = \frac{3}{5} + \frac{2}{5} = \frac{5}{5} = 1 $

4). Tentukan nilai limit dari fungsi trigonometri berikut.
a). $ \displaystyle \lim_{x \to \infty } x \sin \frac{1}{x} \, \, \, $ b). $ \displaystyle \lim_{x \to 0 } \frac{\tan x - \sin x}{4x^3} $
Penyelesaian :
a). Misalkan : $ y = \frac{1}{x} \rightarrow x = \frac{1}{y} $
Untuk $ x \, $ mendekati $ \infty \, $ maka $ y \, $ mendekati 0. ($ y = \frac{1}{x} = \frac{1}{\infty} = 0 $) .
Substitusikan semua permisalannya ake limitnya :
$ \begin{align} \displaystyle \lim_{x \to \infty } x \sin \frac{1}{x} & = \displaystyle \lim_{\frac{1}{x} \to \frac{1}{\infty} } x \sin \frac{1}{x} \\ & = \displaystyle \lim_{ y \to 0 } \frac{1}{y} . \sin y \\ & = \displaystyle \lim_{ y \to 0 } \frac{\sin y}{y} \\ & = 1 \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to \infty } x \sin \frac{1}{x} = $

b). Ingat rumus : $ \cos x = 1 - 2\sin ^2 \frac{1}{2} x \, $ dan $ \tan x = \frac{\sin x}{\cos x } $
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{\tan x - \sin x}{4x^3} & = \displaystyle \lim_{x \to 0 } \frac{\frac{\sin x}{\cos x} - \sin x}{4x^3} \\ & = \displaystyle \lim_{x \to 0 } \frac{\frac{\sin x}{\cos x} - \frac{\sin x \cos x}{\cos x} }{4x^3} \\ & = \displaystyle \lim_{x \to 0 } \frac{\frac{\sin x - \sin x \cos x}{\cos x} }{4x^3} \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x - \sin x \cos x }{4x^3 . \cos x } \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x ( 1 - \cos x ) }{4x.x.x . \cos x } \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x ( 1 - [ 1 - 2\sin ^2 \frac{1}{2} x ] ) }{4x.x.x . \cos x } \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x ( 2\sin ^2 \frac{1}{2} x ) }{4x.x.x . \cos x } \\ & = \displaystyle \lim_{x \to 0 } \frac{ 2\sin x . \sin \frac{1}{2} x . \sin \frac{1}{2} x }{4x.x.x . \cos x } \\ & = \displaystyle \lim_{x \to 0 } \frac{2}{4} . \frac{ \sin x }{x } . \frac{ \sin \frac{1}{2} x }{x } . \frac{ \sin \frac{1}{2} x }{x } . \frac{1}{\cos x} \\ & = \frac{1}{2} . 1 . \frac{ \frac{1}{2} }{1 } . \frac{ \frac{1}{2} }{1} . \frac{1}{\cos 0} \\ & = \frac{1}{2} . 1 . \frac{1}{2}. \frac{1}{2}. \frac{1}{1} \\ & = \frac{1}{8} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 0 } \frac{\tan x - \sin x}{4x^3} = \frac{1}{8} $

Kaitan Limit fungsi Trigonometri dan Fungsi Aljabar
       Penyelesaian limit yang ada kaitan limit fungsi trigonometri dan fungsi aljabar menggunakan sifat-sifat berikut :

i). $ \displaystyle \lim_{x \to k } \frac{\sin af(x) }{bf(x)} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to k } \frac{ af(x) }{\sin bf(x)} = \frac{a}{b} $
ii). $ \displaystyle \lim_{x \to k } \frac{\tan af(x) }{bf(x)} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to k } \frac{ af(x) }{\tan bf(x)} = \frac{a}{b} $
iii). $ \displaystyle \lim_{x \to k } \frac{\sin af(x) }{\sin bf(x)} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to k } \frac{ \tan af(x) }{\tan bf(x)} = \frac{a}{b} $
iv). $ \displaystyle \lim_{x \to k } \frac{\sin af(x) }{\tan bf(x)} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to k } \frac{ \tan af(x) }{\sin bf(x)} = \frac{a}{b} $

Dengan syarat : $ f(k) = 0 $
Contoh :
5). Tentukan nilai limit fungsi trigonometri berikut :
a). $ \displaystyle \lim_{x \to 1 } \frac{\sin (x - 1) }{x^2 - 1} \, \, \, $ b). $ \displaystyle \lim_{x \to 2 } \frac{ x^2 + x -6}{ \tan ( x - 2) } \, \, \, $ c). $ \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ \sqrt{ 4 + x} - 2 } $
Penyelesaian :
a). Faktorkan bentuk aljabarnya : $ p^2 - q^2 = (p-q)(p+q) $
$ \begin{align} \displaystyle \lim_{x \to 1 } \frac{\sin (x - 1) }{x^2 - 1} & = \displaystyle \lim_{x \to 1 } \frac{\sin (x - 1) }{(x-1)(x+1)} \\ & = \displaystyle \lim_{x \to 1 } \frac{\sin (x - 1) }{(x-1)} . \frac{1}{x+1} \\ & = 1 . \frac{1}{1+1} \\ & = \frac{1}{2} \end{align} $
Sehingga nilai $ \displaystyle \lim_{x \to 1 } \frac{\sin (x - 1) }{x^2 - 1} = \frac{1}{2} $

b). Faktorkan bentuk aljabarnya :
$ \begin{align} \displaystyle \lim_{x \to 2 } \frac{ x^2 + x -6}{ \tan ( x - 2) } & = \displaystyle \lim_{x \to 2 } \frac{ (x-2)(x+3)}{ \tan ( x - 2) } \\ & = \displaystyle \lim_{x \to 2 } \frac{ (x-2)}{ \tan ( x - 2) } . (x+3) \\ & = 1 . (2+3) \\ & = 5 \end{align} $
Jadi, nilai $ \displaystyle \lim_{x \to 2 } \frac{ x^2 + x -6}{ \tan ( x - 2) } = 5 $

c). Kalikan sekawan bentuk akarnya :
$ \begin{align} \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ \sqrt{ 4 + x} - 2 } & = \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ \sqrt{ 4 + x} - 2 } \times \frac{\sqrt{ 4 + x} + 2 }{\sqrt{ 4 + x} + 2 } \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ (4+x) - 4 } \times (\sqrt{ 4 + x} + 2 ) \\ & = \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ x } \times (\sqrt{ 4 + x} + 2 ) \\ & = 1 \times (\sqrt{ 4 + 0} + 2 ) \\ & = 1 \times (2 + 2 ) \\ & = 4 \end{align} $
Jadi, nilai $ \displaystyle \lim_{x \to 0 } \frac{ \sin x }{ \sqrt{ 4 + x} - 2 } = 4 $

6). Tentukan nilai $ \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \, $ untuk fungsi $ f(x) = \cos x $
Penyelesaian :
*). Ingat bentuk : $ \cos (A+B) = \cos A \cos B - \sin A \sin B $
Sehingga : $ f(x+h) = \cos (x + h) = \cos x \cos h - \sin x \sin h $
*). Rumus : $ \cos px = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga : $ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $
bentuk : $ \cos h - 1 = (1 - 2\sin ^2 \frac{1}{2} h) - 1 = - 2\sin ^2 \frac{1}{2} h = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h $
*). Menentukan penyelesaiannya,
$ \begin{align} \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} & = \displaystyle \lim_{h \to 0 } \frac{ (\cos x \cos h - \sin x \sin h) - \cos x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\cos x \cos h - \cos x ) - \sin x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x ( \cos h - 1 ) - \sin x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x ( \cos h - 1 ) }{h} - \displaystyle \lim_{h \to 0 } \frac{ \sin x \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) - \sin x . 1 \\ & = \cos x . \frac{1}{2}. (- 2\sin 0 ) - \sin x \\ & = \cos x . \frac{1}{2}. (0 ) - \sin x \\ & = 0- \sin x \\ \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} & = - \sin x \end{align} $

   Silahkan teman-teman juga simak dan pelajari materi limit tak hingga dengan fungsi trigonometri yaitu pada artkel "Limit Tak Hingga Fungsi Trigonometri".