Tampilkan postingan dengan label kumpulan soal. Tampilkan semua postingan
Tampilkan postingan dengan label kumpulan soal. Tampilkan semua postingan

Kumpulan Soal Vektor Seleksi Masuk PTN

         Blog koma - Nah artikel terakhir yang terkait dengan "kumpulan soal matematika per bab seleksi masuk ptn" adalah tentang Kumpulan Soal Vektor Seleksi Masuk PTN. Materi vektor biasanya keluar soal-soalnya pada matematika ipa (matematika saintek). Vektor kalau secara aljabar penghitungannya mirip dengan matriks, namun secara geometri akan lebih sulit bagi kita untuk mengerjakan soal-soalnya. Nah, dengan adanya Kumpulan Soal Vektor Seleksi Masuk PTN ini akan mempermudah kita dalam menguasai materi vektor, dimana soal-soalnya kita susun dari berbegai seleksi seperti SBMPTN, SNMPTN, SPMB, UMPTN, dan juga seleksi mandiri seperti SImak UI, UM UGM, dan SPMK UB. Berikut Kumpulan Soal Vektor Seleksi Masuk PTN dan lengkap dengan pembahasan masing-masing soalnya.

Nomor 1. Soal SBMPTN Mat IPA 2014 Kode 554
Diberikan limas $T.ABC$. Misalkan $u=\vec{TA}, v=\vec{TB}, w=\vec{TC}$. Jika $P$ titik berat $\Delta ABC$, maka $\vec{TP}=...$
sbmptn_mat_ipa_2014.png
Nomor 2. Soal SBMPTN MatDas 2014 Kode 611
Vektor-vektor $u , v, \, $ dan $w$ tak nol dan $|u|=|v|$. Jika $|v-w|=|u-w|$, maka ...
Nomor 3. Soal UTUL UGM Mat IPA 2014
Diketahui vektor $\vec{a}$ dan $\vec{b}$ membentuk sudut sebesar $\theta$ . Jika panjang proyeksi vektor $\vec{b}$ pada $\vec{a}$ sama dengan $2sin\theta$ dan panjang vektor $\vec{b}$ adalah 1, maka $tan2\theta =...$
Nomor 4. Soal SBMPTN Mat IPA 2013 Kode 436
Diketahui A(-3,0,0), B(0,3,0), dan C(0,0,7). Panjang vektor proyeksi $\vec{AC}$ ke vektor $\vec{AB}$ adalah ...
Nomor 5. Soal SNMPTN Mat IPA 2012 Kode 634
Diketahui $|\vec{u}|=1 $ dan $|\vec{v}|=2 $ . Jika $\vec{u} $ dan $\vec{v} $ membentuk sudut 30$^o $ , maka ($\vec{u}+\vec{v} ) . \vec{v} = ...$
Nomor 6. Soal SNMPTN Mat IPA 2011 Kode 574
Diketahui vektor $\vec{u}=(a, -2, -1) $ dan $\vec{v}=(a, a, -1) $ . Jika vektor $\vec{u} $ tegak lurus pada $\vec{v}$ , maka nilai $a$ adalah ...
Nomor 7. Soal SNMPTN Mat IPA 2011 Kode 574
Pernyataan berikut yang benar adalah ...
(A) Jika $\sin x = \sin y $ , maka $x=y$
(B) Untuk setiap vektor $\vec{u}, \vec{v} $ dan $\vec{w} $ berlaku $\vec{u}.(\vec{v}.\vec{w}) = (\vec{u}.\vec{v}).\vec{w} $
(C) Jika $\int \limits_a^b f(x)dx=0 $ , maka $f(x) = 0 $
(D) Ada fungsi $f$ sehingga $\displaystyle \lim_{x \to c} f(x) \neq f(c) $ untuk suatu $c$
(E) $1-\cos 2x = 2\cos ^2 x $
Nomor 8. Soal SNMPTN Mat IPA 2011 Kode 574
Vektor $\vec{u} = 4\vec{i} + b\vec{j}+c\vec{k} $ tegak lurus vektor $\vec{w} = 2\vec{i} -2\vec{j}+3\vec{k} $ dan $|\vec{u} | = 2|\vec{w}| $ , maka nilai $b$ memenuhi ...
Nomor 9. Soal SNMPTN Mat IPA 201 Kode 574
Diketahui vektor $\vec{u} = (1, -3a+1, 2) $ dan $\vec{v} = (a^3-3a^2, 3, 0) $ dengan $-2 < a < 4 $ . Nilai maksimum $\vec{u} . \vec{v} $ adalah ...
Nomor 10. Soal SNMPTN Mat IPA 2010 Kode 526
Nilai $p$ agar vektor $\, \, pi+2j-6k \, \, $ dan $\, \, 4i-3j+k \, \, $ saling tegak lurus adalah ...

Nomor 11. Soal SNMPTN Mat IPA 2009 Kode 276
Agar vektor $\vec{a} = 2\vec{i} + p \vec{j} + \vec{k} $ dan $\vec{b} = 3\vec{i} + 2 \vec{j} + 4\vec{k} $ saling tegak lurus, maka nilai $p$ adalah ....
Nomor 12. Soal Simak UI Mat IPA 2014
Misalkan diberikan vektor $\vec{b}=(y,-2z,3x)$, dan $\vec{c}=(2z,3x,-y)$. Diketahui vektor $\vec{a}$ membentuk sudut tumpul dengan sumbu $y$ dan $|| \vec{a} || = 2\sqrt{3}$. Jika $\vec{a}$ membentuk sudut yang sama dengan $\vec{b}$ maupun $\vec{c}$ , dan tegak lurus dengan $\vec{d} = (1,-1,2)$ , maka $\vec{a}=...$
Nomor 13. Soal SPMB Mat IPA 2006
Diberikan vektor-vektor $ \vec{a} = x\vec{i} - 3x\vec{j}+6y\vec{k} \, $ dan $ \, \vec{b} = (1-y)\vec{i} +3\vec{j}-(1+x)\vec{k} \, $ dengan $ x > 0 $. Jika $ \vec{a} \, $ dan $ \vec{b} $ sejajar, maka $ \vec{a}+3\vec{b} = .... $
Nomor 14. Soal SPMB Mat IPA 2005
Diketahui vektor satuan $ \vec{u} = 0,8\vec{i} + a \vec{j}. \, $ Jika vektor $ \vec{v} = b\vec{i} + \vec{j} \, $ tegak lurus $ \vec{u} \, $ , maka $ a . b = .... $
Nomor 15. Soal SPMB Mat IPA 2004
Bila panjang proyeksi vektor $ \vec{b} = \vec{i} - 2 \vec{j} \, $ pada vektor $ \vec{a} = x\vec{i} + y \vec{j} \, $ dengan $ x, y > 0 \, $ adalah 1, maka nilai $ 4x-3y+1 = .... $
Nomor 16. Soal SPMB Mat IPA 2003
Vektor $ \vec{u} = 3\vec{i}+4\vec{j}+x\vec{k} \, $ dan $ \, \vec{v} = 2\vec{i}+3\vec{j}-6\vec{k}. \, $ Jika panjang proyeksi $ \vec{u} $ pada $ \, \vec{v} \, $ adalah 6, maka $ x = ..... $
Nomor 17. Soal SPMB Mat IPA 2002
O adalah titik awal, jika
$ \vec{a} \, $ adalah vektor posisi A
$ \vec{b} \, $ adalah vektor posisi B
$ \vec{c} \, $ adalah vektor posisi C
$ \vec{CD} = \vec{b} , \, \vec{BE} = \vec{a} , \, \vec{DP} = \vec{OE} $
Maka vektor posisi titik P adalah .....
Nomor 18. Soal UMPTN Mat IPA 2001
Jika sudut antara vektor $ \vec{a} = \vec{i}+\sqrt{2}\vec{j}+p\vec{k} \, $ dan $ \vec{b} = \vec{i}-\sqrt{2}\vec{j}+p\vec{k} \, $ adalah $ 60^\circ , $ maka $ p = .... $
Nomor 19. Soal UMPTN Mat IPA 2000
umptn_mat_ipa_1_2000.png
Pada segitiga ABC, E adalah titik tengah BC dan M adalah titik berat segitiga tersebut.
Jika $ \vec{u} = \vec{AB} \, $ dan $ \vec{v} = \vec{AC}, \, $ maka ruas garis berarah $ \vec{ME} \, $ dapat dinyatakan dalam $ \vec{u} \, $ dan $ \vec{v} \, $ sebagai .....
Nomor 20. Soal Simak UI Mat IPA 2014
Diketahui vektor $\vec{a}=(-1,1,2) , \vec{u}=(-1,c,2)$ dan $\vec{x}=(-3,0,1)$. $L_1$ adalah luas segitiga siku-siku yang dibentuk oleh $\vec{a}$ dan proyeksi vektor $\vec{a}$ pada $\vec{x}$. $L_2$ adalah luas segitiga siku-siku yang dibentuk oleh $\vec{u}$ dan proyeksi vektor $\vec{u}$ pada $\vec{x}$. Jika $L_1=\frac{1}{8}L_2$, maka nilai $2c^2=...$

Nomor 21. Soal SBMPTN Mat IPA 2014 Kode 523
Diberikan limas $T.ABC$. Misalkan $u=\vec{TA}, v=\vec{TB}, w=\vec{TC}$. Jika $P$ titik berat $\Delta ABC$, maka $\vec{TP}=...$
sbmptn_1_mat_ipa_k523_2014.png
Nomor 22. Soal SBMPTN Mat IPA 2014 Kode 532
Jika $ u \, $ dan $ v \, $ adalah vektor-vektor sehingga $ ||u|| = 5, ||v|| = 3, \, $ dan $ u.v = -1 , \, $ maka $ ||u - v || = ..... $
Nomor 23. Soal SBMPTN Mat IPA 2014 Kode 586
sbmptn_1_mat_ipa_k586_2014.png
Diberikan segi-4 sembarang ABCD dengan X dan Y adalah masing-masing titik tengah diagonal AC dan BD. Jika $ u = \vec{AB} , \, v = \vec{AC} , \, w = \vec{AD} , \, $ maka $ \vec{XY} = .... $
Nomor 24. Soal SBMPTN Mat IPA 2014 Kode 542
Vektor-vektor $ u , \, v , \, $ dan $ x \, $ tidak nol. Vektor $ u+v \, $ tegak lurus $ u - x \, $ , jika ....
(A) $ |u+v| = |u-v| $
(B) $ |v| = |x| $
(C) $ u.u = v.v, \, v = -x $
(D) $ u.u = v.v, \, v = x $
(E) $ u.v = v.v $
Nomor 25. Soal UTUL UGM Mat IPA 2013
Diketahui vektor-vektor $ \vec{u} = (a,1,-a) \, $ dan $ \vec{v} = (1,a,a). \, $ Jika $ \vec{u}_1 \, $ vektor proyeksi $ \vec{u} \, $ pada $ \vec{v}, \, \vec{v}_1 \, $ vektor proyeksi $ \vec{v} \, $ pada $ \vec{u} , \, $ dan $ \theta \, $ sudut antara $ \vec{u} \, $ dan $ \vec{v} \, $ dengan $ \cos \theta = \frac{1}{3}, \, $ maka luas jajaran genjang yang dibentuk oleh $ \vec{u}_1 \, $ dan $ \vec{v}_1 \, $ adalah ....
Nomor 26. Soal SBMPTN Mat IPA 2015 Kode 517
Diketahui $\vec{a} = 2\vec{i} - 2\vec{j} - \vec{k} \, $ dan $ \vec{b} = \vec{i} - 4\vec{j}. \, $ Luas jajaran genjang yang dibentuk oleh $ \vec{a} + \vec{b} \, $ dan $ \vec{a} \, $ adalah ....
Nomor 27. Soal UTUL UGM Mat IPA 2015
Diketahui vektor $ \vec{p} = a\vec{i}+b\vec{j}+2\vec{k} , \, \vec{q} = \vec{i}+2\vec{j}+c\vec{k} , \, $ dan $ \vec{r} = 3\vec{i}+6\vec{j}+c\vec{k} , \, $ dengan $ a, b \neq 0 . \, $ Jika $ \vec{p} \bot \vec{q} \, $ dan $ \, \vec{p} \bot \vec{r} \, $ maka $ \frac{a^2 + 4b^2}{ab} = .... $
Nomor 28. Soal UTUL UGM Mat IPA 2016 Kode 581
Diketahui vektor $\vec{OA} = (1, \, 2) \, $ dan $ \vec{OB}=(2, \, 1)$. Jika titik P terletak pada AB sehingga AP:PB=1:2, maka panjang vektor $\vec{OP} \, $ adalah ....
A). $ \frac{3}{2}\sqrt{2} \, $ B). $ \frac{1}{3}\sqrt{2} \, $ C). $ \frac{2}{3}\sqrt{2} \, $ D). $ \frac{1}{3}\sqrt{41} \, $ E). $ \frac{3}{2}\sqrt{41} $
Nomor 29. Soal UTUL UGM Mat IPA 2016 Kode 381
Diketahui $ \theta \, $ merupakan sudut yang dibentuk oleh vektor $ \vec{a} \, $ dan $ \vec{b} $, dengan $ \vec{a} = (1, p+1, p-1) \, $ dan $ \vec{b} = (-1,3,-3)$. Jika $ \cos \theta = \frac{5}{19}, \, $ maka $ p^2 = .... $
A). $ 2 \, $ B). $ 4 \, $ C). $ 8 \, $ D). $ 16 \, $ E). $ 25 $
Nomor 30. Soal SBMPTN Mat IPA 2016 Kode 246
Misalkan vektor $ p = \left( {}^2 \log x^c , \, 2, \, {}^2 \log x^{2c} \right) $ dan $ q = \left( {}^2 \log x, \, 2, \, {}^2 \log x^{2c^2} \right) $ dengan $ 0 < x < \infty $. Nilai $ c $ yang memenuhi syarat agar $ p $ dan $ q $ membentuk sudut tumpul berada pada interval .....
A). $ \left(0, \, \frac{4}{3} \right) \, $ B). $ \left(-\frac{4}{3}, \, 0 \right) \, $
C). $ \left(-\frac{4}{3}, \, \frac{4}{3} \right) \, $ D). $ \left(-\frac{1}{3}, \, \frac{4}{3} \right) \, $
E). $ \left(\frac{1}{3}, \, \frac{4}{3} \right) $

Nomor 31. Soal SBMPTN Mat IPA 2016 Kode 250
Jika vektor $ v = \left( \begin{matrix} a \\ b \end{matrix} \right) $ dirotasikan sejauh $ 90^\circ$ berlawanan arah jarum jam terhadap titik pusat, kemudian dicerminkan pada garis $ x = -y $ menjadi vektor $ u $, maka $ u + v = .... $
A). $\left( \begin{matrix} a \\ 0 \end{matrix} \right) \, $ B). $ \left( \begin{matrix} 2a \\ 0 \end{matrix} \right) \, $ C). $ \left( \begin{matrix} 2a \\ 2b \end{matrix} \right) \, $ D). $ \left( \begin{matrix} 0 \\ 2b \end{matrix} \right) \, $ E). $ \left( \begin{matrix} 0 \\ b \end{matrix} \right) \, $
Nomor 32. Soal SBMPTN Mat IPA 2016 Kode 251
Jika vektor $ x = \left( \begin{matrix} a \\ b \end{matrix} \right) $ didilatasi sebesar $ b $ kali kemudian dirotasi sejauh $ 90^\circ $ berlawanan arah jarum jam terhadap titik pusat menjadi vektor $ y $, maka $ ax - y = .... $
A). $a\left( \begin{matrix} a + b \\ 0 \end{matrix} \right) \, $ B). $ \left( \begin{matrix} a^2 + b^2 \\ 0 \end{matrix} \right) \, $ C). $ b\left( \begin{matrix} a + b \\ 0 \end{matrix} \right) \, $ D). $ \left( \begin{matrix} 0 \\ a^2 + b^2 \end{matrix} \right) \, $ E). $ b\left( \begin{matrix} 0 \\ a + b \end{matrix} \right) \, $
Nomor 33. Soal UTUL UGM Mat IPA 2010
Vektor $\vec{u} = (x, y, 1) $ sejajar $ \vec{v} = (-1,3,z) $. Jika $ \vec{u} $ tegak lurus $ (3,-2,3) $ , maka $ y = .... $
A). $ 3 \, $ B). $ 1 \, $ C). $ \frac{1}{3} \, $ D). $ -\frac{1}{3} \, $ E). $ -1 $
Nomor 34. Soal SBMPTN Mat IPA 2017 Kode 165
Diketahui vektor-vektor $ \vec{a} , \, \vec{b} , \, $ dan $ \vec{ c} $ dengan $ \vec{b} = (-2, \, 1) , \, \vec{b} \bot \vec{c} , \, $ dan $ \vec{a}-\vec{b}-\vec{c}=0$. Jika $|\vec{a}| = 5 $ dan sudut antara $ \vec{a} $ dan $ \vec{b} $ adlah $ \alpha $ , maka luas segitiga yang dibentuk ujung-ujung vektor $ \vec{a} , \vec{b}, $ dan $\vec{c} $ adalah ....
A). $ 5\sqrt{5} \, $ B). $ \frac{\sqrt{5}}{2} \, $ C). $ \frac{2}{\sqrt{5}} \, $ D). $ 5 \, $ E). $ 10 \, $
Nomor 35. Soal SBMPTN Mat IPA 2017 Kode 166
Vektor $ \vec{a} $ dan $ \vec{b} $ membentuk sudut tumpul $ \alpha $ dengan $ \sin \alpha = \frac{1}{\sqrt{7}} $ . Jika $ |\vec{a}| = \sqrt{5} $ dan $ |\vec{b}| = \sqrt{7} $ dan $ \vec{b}=\vec{a}+\vec{c} $ , maka $ \vec{a}.\vec{c} = .... $
A). $ \sqrt{5} - \sqrt{30} \, $ B). $ \sqrt{30} - 5 \, $
C). $ -\sqrt{5} - \sqrt{30} \, $ D). $ -5 - \sqrt{30} \, $
E). $ -\sqrt{5} + \sqrt{30} \, $
Nomor 36. Soal SBMPTN Mat IPA 2017 Kode 167
Diketahui vektor $ \vec{a} = (4,6), \vec{b}=(3,4)$, dan $ \vec{c} =(p,0) $. Jika $ |\vec{c}-\vec{a}|=10 $ , maka kosinus sudut antara $ \vec{b} $ dan $ \vec{c} $ adalah ....
A). $ 2/5 \, $ B). $ 1/2 \, $ C). $ 3/5 \, $ D). $2/3 \, $ E). $ 3/4 \, $
Nomor 37. Soal SBMPTN Mat IPA 2017 Kode 168
Diketahui tiga vektor $ \vec{a}, \vec{b}, $ dan $ \vec{c} $ dengan $|\vec{b}| = 3 $ , $ |\vec{c}| = 4 $ , dan $ \vec{a} = \vec{c} - \vec{b} $ . Jika $ \gamma $ adalah sudut antara vektor $ \vec{b} $ dan $ \vec{c} $ , dengan $ \vec{a}.\vec{c} = 25 $, maka $ \sin \gamma = .... $
A). $ \frac{1}{4} \, $ B). $ \frac{\sqrt{3}}{4} \, $ C). $ \frac{1}{2} \, $ D). $ \frac{\sqrt{7}}{6} \, $ E). $ \frac{\sqrt{7}}{4} \, $
Nomor 38. Soal UTUL UGM Mat IPA 2017 Kode 713
Jika panjang vektor $ \vec{u}, \vec{v}, $ dan $ (\vec{u}+\vec{v}) $ berturut-turut 12, 8, dan $ 4\sqrt{7} $, maka besar sudut antara $ \vec{u} $ dan $ \vec{v} $ adalah ....
A). $ 45^\circ \, $ B). $ 60^\circ \, $ C). $ 90^\circ \, $ D). $ 120^\circ \, $ E). $ 150^\circ $
Nomor 39. Soal UTUL UGM Mat IPA 2017 Kode 713
Jika proyeksi $ \vec{u} = (6,1) \, $ pada $ \vec{p} = (1,1) $ sama dengan proyeksi $ \vec{v}=(\alpha , 5) $ pada $ \vec{p} $ , maka nilai $ \alpha $ yang memenuhi adalah ....
A). $ -12 \, $ B). $ -2 \, $ C). $ 2 \, $ D). $ 5 \, $ E). $ 12 $
Nomor 40. Soal UTUL UGM Mat IPA 2017 Kode 814
Diberikan dua vektor $ \vec{u} = (1, -1, 2) $ dan $ \vec{v} = (-1,1,-1) $ . Jika vektor $ \vec{w} $ mempunyai panjang satu dan tegak lurus dengan vektor $ \vec{u } $ dan $ \vec{v} $ , maka $ \vec{w} = .... $
A). $ (0,0,0) \, $
B). $ \left( \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}, 0 \right) \, $
C). $ \left( \frac{1}{2}\sqrt{2}, -\frac{1}{2}\sqrt{2}, 0 \right) \, $
D). $ \left( -\frac{2}{3}, \frac{1}{3}, \frac{2}{3} \right) \, $
E). $ \left( \frac{2}{3} , \frac{1}{3}, \frac{2}{3} \right) \, $
Nomor 41. Soal UTUL UGM Mat IPA 2017 Kode 814
Diketahui vektor-vektor $ \vec{u} = a\vec{i}+\vec{j}+2\vec{k} $ dan $ \vec{v} = -\vec{i}-\vec{j}-\vec{k} $ . Jika vektor $ \vec{w} $ tegak lurus vektor $ \vec{u} $ dan $ \vec{v} $ dengan panjang vektor $ \vec{w} $ adalah 3, maka jumlah nilai-nilai $ a $ yang memenuhi adalah ....
A). $ 0 \, $ B). $ 1 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Update bulan November 2017 "kumpulan soal-soal Matematika Seleksi Masuk PTN" dilengkapi dengan pembahasannya.

Nomor 42. Soal UM UGM 2009 Mat IPA
Vektor $ \vec{w} $ merupakan vektor proyeksi tegak lurus vektor $ (a, 1-a, a) $ pada vektor $ (-1,-1,1) $. Jika panjang $ \vec{w} $ adalah $ \frac{2}{3}\sqrt{3} $ , maka di antara nilai $ a $ berikut ini yang memenuhi adalah ....
A). $ -3 \, $ B). $ -2 \, $ C). $ 3 \, $ D). $ 2 \, $ E). $ 1 $
Nomor 43. Soal UM UGM 2008 Mat IPA
Panjang proyeksi vektor $(a, 5, -1 ) $ pada vektor $ (1,4,8) $ adalah 2, maka $ a = .... $
A). $ 6 \, $ B). $ 5 \, $ C). $ 4 \, $ D). $ 3 \, $ E). $ 2 $
Nomor 44. Soal UM UGM 2007 Mat IPA
Diketahui vektor-vektor $ \vec{a} = (2,2,z) $ , $ \vec{b}= (-8,y,-5 ) $ dan $ \vec{d} = (2x,22-z,8) $ . Jika vektor $ \vec{ a } $ tegak lurus dengan vektor $ \vec{b } $ dan vektor $ \vec{ c } $ sejajar dengan $ \vec{ d} $ , maka $ y + z = .... $
A). $ 5 \, $ B). $ -1 \, $ C). $ 2 \, $ D). $ 1 \, $ E). $ -5 $
Nomor 45. Soal UM UGM 2006 Mat IPA
Jika proyeksi vektor $ \vec{u} = 3\vec{i} + 4\vec{j} $ ke vektor $ \vec{v}=-4\vec{i}+8\vec{j} $ adalah vektor $ \vec{w} $, maka $ |\vec{w}| $ adalah ....
A). $ \sqrt{5} \, $ B). $ 5 \, $ C). $ \sqrt{3} \, $ D). $ 1 \, $ E). $ 3 $
Nomor 46. Soal UM UGM 2005 Mat IPA
Jika $ \vec{p} , \vec{q}, \vec{r} $ dan $ \vec{s} $ berturut-turut adalah vektor posisi titik-titik sudut jajaran genjang PQRS dengan PQ sejajar SR, maka $ \vec{s} $
A). $ -\vec{p}+\vec{q}+\vec{r} \, $
B). $ -\vec{p}-\vec{q}+\vec{r} \, $
C). $ \vec{p}-\vec{q}+\vec{r} \, $
D). $ \vec{p}-\vec{q}-\vec{r} \, $
E). $ \vec{p}+\vec{q}+\vec{r} \, $
Nomor 47. Soal UM UGM 2004 Mat IPA
Diketahui vektor $ \vec{u} = (2, -1, 1) $ dan $ \vec{v} = (-1,1,-1)$. $ \vec{w} $ vektor yang panjangnya satu, tegak lurus pada $ \vec{u} $ dan tegak lurus pada $ \vec{v} $ adalah ....
A). $ ( 0,0,1) $
B). $ \left(0, \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2} \right) $
C). $ \left( 0, -\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2} \right) $
D). $ \left( -\frac{2}{3}, \frac{1}{3}, \frac{2}{3} \right) $
E). $ \left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right) $
Nomor 48. Soal UM UGM 2003 Mat IPA
DIketahui kubus satuan ABCD.EFGH. Misalkan vektor-vektor : $ \vec{AB}=\vec{i} = (1,0,0) $, $ \vec{AD}=\vec{j}=(0,1,0)$ , dan $ \vec{AE}=\vec{k}=(0,0,1)$. Titik P adalah titik pusat sisi BCGF. Vektor proyeksi $ \vec{FP} $ ke vektor $ \vec{AC} $ adalah ....
A). $ \frac{\sqrt{2}}{2} \, $ B). $ \frac{1}{2\sqrt{2}} \, $ C). $ \frac{1}{2\sqrt{2}} (0,1,1) \, $
D). $ \frac{1}{2\sqrt{2}} (1,1,0) \, $ E). $ \frac{1}{4} (1,1,0) \, $
Nomor 49. Soal UM UNDIP 2017 Mat IPA
Panjang vektor $ \vec{u}, \vec{v} $ dan $ \vec{u} + \vec{v} $ berturut-turut adalah 15, 7, 13 satuan panjang. Besar sudut yang dibentuk oleh vektor $ \vec{u} $ dan vektor $ \vec{v} $ adalah ....
A). $ 45^\circ \, $ B). $ 60^\circ \, $ C). $ 90^\circ \, $ D). $ 120^\circ \, $ E). $ 150^\circ $
       Demikian Kumpulan Soal Vektor Seleksi Masuk PTN lengkap dengan pembahasannya. Semoga artikel ini bermanfaat untuk kita semua. Kumpulan Soal Vektor Seleksi Masuk PTN ini akan terus kami update untuk soal-soal tahun lainnya. Jika ada kritik dan saran, langsung saja ketikkan komentar pada kolom kontar di bagian bawah setiap artikel. Silahkan juga pelajari kumpulan soal lain pada "Kumpulan Soal Matematika Per Bab Seleksi Masuk PTN". Terima Kasih.

Kumpulan Soal Turunan Seleksi Masuk PTN

         Blog koma - Pada artikel berikut ini kita akan menyajikan tentang Kumpulan Soal Turunan Seleksi Masuk PTN yang juga adalah salah satu seri dari "kumpulan soal matematika per bab seleksi masuk PTN". Materi turunan juga sering keluar di soal-soal seleksi masuk Perguruan Tinggi Negeri (PTN) seperti SBMPTN, SNMPTN, SPMB, UMPTN, dan juga seleksi mandiri seperti Simak UI, UM UGM, SPMK UB, dan Selma UM. Materi turunan cakupannya juga luas, selain materi dasar juga ada terapan dari turunan seperti fungsi naik atau turun, garis singgung, nilai maksimum atau minimum, dan untuk mensketsa kurva suatu kurva, karena inilah hampir setiap tahun soal turunan selalu keluar di soal seleksi masuk PTN seperti yang ada di Kumpulan Soal Turunan Seleksi Masuk PTN ini. Berikut langsung saja Kumpulan Soal Turunan Seleksi Masuk PTN dan pembahasannya.

Nomor 1. Soal SBMPTN MatDas 2014 Kode 654
Diketahui $f(0)=1$ dan $f^\prime (0)=2$. Jika $g(x)=\frac{1}{(2f(x)-1)^3}$ , maka $g^\prime (0)=...$
Nomor 2. Soal SBMPTN MatDas 2014 Kode 611
Garis $l$ mempunyai gradien 2. Jika $l$ menyinggung grafik fungsi $f(x)=-x^2+px+1$ di $x=1$ , maka persamaan $l$ adalah ...
Nomor 3. Soal UTUL UGM MatDas 2014
Untuk $x\geq 1$ , nilai maksimum fungsi $f(x)=-x^3+6x^2-9x+7$ adalah ....
Nomor 4. Soal UTUL UGM MatDas 2014
Kurva $y=3x-\frac{3}{x^2}$ memotong sumbu $x$ di titik P. Persamaan garis singgung kurva di titk P adalah ...
Nomor 5. Soal UTUL UGM Mat IPA 2014
Jika $f(x)=(sinx+cosx)(cos2x+sin2x)$ dan $f^\prime (x)=2cos3x + g(x)$ maka $g(x)=...$
Nomor 6. Soal SBMPTN Mat IPA 2013 Kode 436
Diketahui $f(x)=\frac{2}{3}x^3-\frac{1}{2}x^2-3x+\frac{1}{6}$ . Jika $g(x)=f(1-x)$ , maka $g$ naik pada selang ...
Nomor 7. Soal SBMPTN Mat IPA 2013 Kode 436
Diketahui $F(x)=(1+a)x^3-3bx^2-3x$ . Jika $F^{\prime \prime} $ habis dibagi $x+1$ , maka kurva $y=F(x)$ tidak mempunyai titik ekstrem lokal jika ...
Nomor 8. Soal SPMK UB Mat IPA 2013
Grafik fungsi $f(x) = ax^2+bx+1$ mempunyai garis singgung horizontal pada titik (2,5), maka $b-a=...$
Nomor 9. Soal SPMK UB Mat IPA 2013
Garis singgung fungsi $f(x) = \sqrt{(x^2-7)^3} $ di $x = 4 $ adalah ...
Nomor 10. Soal SNMPTN MatDas 2008 Kode 201
Persamaan garis singgung pada parabola: $y=2x^2-16x+24$ di titik potongnya dengan sumbu Y adalah ...

Nomor 11. Soal SNMPTN MatDas 2008 Kode 201
Jika garis $g$ menyinggung kurva $y=\sin x + \cos x $ di titik yang absisnya $\frac{1}{2}\pi$ , maka garis $g$ memotong sumbu Y di titik ...
Nomor 12. Soal SNMPTN MatDas 2008 Kode 201
Volume balok terbesar yang luas semua bidang sisinya 96 cm$^2$ dan alasnya persegi adalah ...
Nomor 13. Soal SNMPTN MatDas 2008 Kode 201
Nilai minimum dari fungsi $y=(x-3)\sqrt{x}$ adalah ...
Nomor 14. Soal SNMPTN MatDas 2008 Kode 201
Turunan pertama dari fungsi $y=\frac{\cos x - \sin x}{\cos x + \sin x}$ adalah ...
Nomor 15. Soal SNMPTN Mat IPA 2012 Kode 634
Grafik fungsi $f(x)=ax^3+bx^2-cx+20 $ turun, jika ...
Nomor 16. Soal SNMPTN Mat IPA 201 Kode 574
Diberikan kurva $y=x^3+2x^2-x+5$ . Jika garis singgung kurva di titik ($a,b$) sejajar dengan garis $y-3x-4=0$ , maka nilai $b$ yang mungkin adalah ...
Nomor 17. Soal SNMPTN Mat IPA 201 Kode 574
Grafik $y=f^\prime (x) $ ditunjukkan pada gambar berikut
sbmptn_mat_ipa_k574_1_2011.png
Pernyataan yang benar adalah ...
Nomor 18. Soal SNMPTN Mat IPA 201 Kode 574
Diketahui vektor $\vec{u} = (1, -3a+1, 2) $ dan $\vec{v} = (a^3-3a^2, 3, 0) $ dengan $-2 < a < 4 $ . Nilai maksimum $\vec{u} . \vec{v} $ adalah ...
Nomor 19. Soal SNMPTN Mat IPA 201 Kode 574
Bola dengan diameter 8 cm seluruhnya terdapat dalam kerucut tegak terbalik. Tinggi kerucut dengan volume terkecil yang mungkin adalah ... cm.
Nomor 20. Soal SNMPTN Mat IPA 2010 Kode 526
Jika garis singgung kurva $y=2x\cos 3x $ di titik ($\pi , -2\pi $ ) tegak lurus dengan garis $g$ , maka persamaan garis $g$ adalah ...

Nomor 21. Soal SNMPTN Mat IPA 2010 Kode 526
Diketahui fungsi $f$ dan $g$ dengan $g(x)=f(x^2+2) $ . Jika diketahui bahwa $g^\prime (1) = 8 $ , maka nilai $f^\prime (3) $ adalah ...
Nomor 22. Soal SNMPTN Mat IPA 2009 Kode 276
Diketahui fungsi $f$ dan $g$ dengan nilai $f(2)=f(4)=g^\prime (2) = g^\prime (4) = 2 $ dan $ g(2) = g(4)=f^\prime (2) = f^\prime (4)=4 $ dengan $f^\prime $ dan $g^\prime $ berturut-turut menyatakan turunan pertama fungsi $f$ dan $g$ .
Jika $h(x)=f(g(x)) $ , maka nilai $h^\prime (2) $ adalah ....
Nomor 23. Soal SNMPTN Mat IPA 2009 Kode 276
Diketahui fungsi $f$ dan $g$ dengan $f(x)=x^2+4x+1 $ dan $g^\prime (x) = \sqrt{10 - x^2 } $ dengan $g^\prime $ menyatakan turunan pertama fungsi $g$ . Nilai turunan pertama fungsi $g \circ f $ di $x=0 $ adalah ....
Nomor 24. Soal SNMPTN Mat IPA 2009 Kode 276
Diketahui fungsi $f(x) = b - a\cos \left( \frac{\pi x}{4} \right) $ , dengan $a$ dan $b$ adalah bilangan real positif. Fungsi $f$ untuk $2 \leq x \leq 10 $ mencapai maksimum pada saat $ x = x_1 $ dan mencapai minimum pada saat $x=x_2 $ , maka nilai $x_1 + x_2 $ adalah ....
Nomor 25. Soal SNMPTN Mat IPA 2009 Kode 276
Jika $5x+12y = 60 $ , maka nilai minimum $\sqrt{x^2+y^2} $ adalah ....
Nomor 26. Soal SNMPTN Mat IPA 2009 Kode 276
Titik ($a,b$ ) adalah titik maksimum grafik fungsi $f(x)=\frac{1}{(x+1)^2+4} $ . Nilai $a+b $ adalah ....
Nomor 27. Soal SNMPTN Mat IPA 2008 Kode 302
Diketahui fungsi-fungsi $f$ dan $g$ dengan $f(x)g(x)=x^2-3x $ untuk setiap bilangan real $x$ . Jika $g(1)=2 $ , dan $f^\prime (1) = f(1) = -1 $ , maka $g^\prime (1) = ....$
Nomor 28. Soal SNMPTN Mat IPA 2008 Kode 302
Perhatikan kurva $y=ax+bx^2, \, \, a $ dan $b $ konstan. Jika garis singgung kurva ini pada titik (1, 0) sejajar dengan garis $2x-y+3=0 $ , maka $a+3b $ sama dengan ....
Nomor 29. Soal SPMB MatDas 2007
Sebuah bilangan dikalikan 2, kemudian dikurangi 16 dan setelah itu dikalikan bilangan semula. Jika hasil akhirnya adalah $P $ , maka nilai minimum dari $P $ tercapai bilamana bilangan semula adalah ....
Nomor 30. Soal SPMB MatDas 2007
Suatu proyek dapat dikerjakan selama $p$ hari, dengan biaya setiap harinya $(4p+\frac{1500}{p}-40) $ juta rupiah. Jika biaya minimum proyek tersebut adalah R juta rupiah, maka R = ....
Nomor 31. Soal SPMB MatDas 2007
Jika $f(x)=\frac{2x+1}{x^2-3} $ , maka turunan pertama dari fungsi $f $ di $-3 $ adalah $f^\prime (-3) = .... $
Nomor 31. Soal SPMB Matdas 2006
Grafik $y=2x^3 -3x^2-12x+7 $ turun untuk $x $ yang memenuhi ....
Nomor 32. Soal SPMB MatDas 2006
Jika $f(x)=\sin ^2 3x , $ maka $\displaystyle \lim_{p \to 0} \frac{f(x+2p)-f(x)}{2p} = .... $
Nomor 33. Soal SPMB MatDas 2006
Dari kawat yang panjangnya 500 meter akan dibuat kerangka balok yang salah satu rusuknya 25 meter. Jika volume baloknya maksimum, maka panjang dua rusuk yang lain adalah ....
Nomor 34. Soal SPMB MatDas 2005
Jumlah dua bilangan $p \, $ dan $q \, $ adalah 6. Nilai minimum dari $p^2+q^2 = ..... $
Nomor 35. Soal SPMB MatDas 2005
Garis singgung pada kurva $y=\frac{2x+1}{2-3x} \, \, $ di titik (1, -3) adalah ....
Nomor 36. Soal SPMB MatDas 2005
Jika fungsi $f(x)=\sin ax + \cos bx \, $ memenuhi $f^\prime (0) = b \, \, $ dan $ f^\prime \left( \frac{\pi}{2a} \right) = -1 \, \, $ , maka $a+b = ....$
Nomor 37. Soal SPMB MatDas 2005
Garis $g \, $ melalui titik (4,3) memotong sumbu X positif di A dan sumbu Y positif di B. Agar luas $\Delta$AOB minimum, maka panjang ruas garis AB adalah ....
Nomor 38. Soal SPMB MatDas 2004
Persamaan garis dengan gradien 2 dan menyinggung parabol $ y = (x-1)^2 \, $ adalah ....
Nomor 39. Soal SPMB MatDas 2004
spmb_matdas_1_2004.png
Jika $\Delta$ABC siku-siku samakaki, AC = BC = 4, dan AD = CE, maka luas minimum dari segiempat ABED adalah ....
Nomor 40. Soal SPMB MatDas 2004
Kurva $y = x^3+6x^2-16 \, $ naik untuk nilai $x \, $ yang memenuhi ....

Nomor 41. Soal SPMB MatDas 2004
Jika kurva $y=2x^5-5x^4+20 \, $ mencapai minimum di titik $(x_0, \, y_0) \, $ , maka $x_0 = ....$
Nomor 42. Soal SPMB MatDas 2004
Jika garis $g \, $ menyinggung kurva $y=3\sqrt{x} \, $ di titik yang berabsis 1, maka garis $g \, $ akan memotong sumbu X di titik ....
Nomor 43. Soal SPMB MatDas 2003
Garis $g \, $ melalui titik $(-2, -1) \, \, $ dan menyinggung kurva $ K : \, \, y = 2\sqrt{x}. \, \, $ Jika titik singgung garis $g \, $ dan kurva $ K \, $ adalah $(a, \, b) \, $ , maka $a+b = .... $
Nomor 44. Soal SPMB MatDas 2003
Grafik fungsi $f(x) = x\sqrt{x-2} \, \, $ naik untuk nilai $x \, $ yang memenuhi .....
Nomor 45. Soal SPMB MatDas 2003
Jika $ y = \left| \begin{matrix} x^2-1 & 2 \\ 4x & x+3 \end{matrix} \right| \, \, $ maka nilai minimum $y \, $ adalah ....
Nomor 46. Soal SPMB MatDas 2002
Jika fungsi $ f(x)=x^3+px^2-9x \, $ hanya didefinisikan untuk nilai - nilai $x\, $ yang memenuhi $\, -6 \leq x \leq 0 \, $ dan mencapai nilai maksimum pada saat $ \, x =-3 \, $ , maka nilai $ p \, $ adalah ....
Nomor 47. Soal SPMB MatDas 2002
Diketahui $f(x) = ax^2+bx+4 $ . Jika gradien garis singgung kurva di $ x = 2 \, $ adalah $-1 \, $ dan di $ x = 1 \, $ adalah 3, maka $ a+b = .... $
Nomor 48. Soal SPMB MatDas 2002
Jika $ f(x) = \frac{1}{\sqrt{x}} $ , maka $ -2f^\prime (x) = .... $
Nomor 49. Soal SPMB MatDas 2002
Dari sehelai karton akan dibuat sebuah kotak tanpa tutup dengan alas bujur sangkar. Jika jumlah luas bidang alas dan semua bidang sisi kotak ditentukan sebesar 432 cm$^2\, $ , maka volume kotak terbesar yang mungkin adalah ....
Nomor 50. Soal UMPTN MatDas 2001
Fungsi $ \, f(x) = \frac{1}{3}x^3 -3x^2 +5x - 10 \, $ turun pada interval ....
Nomor 51. Soal UMPTN MatDas 2001
Jarak terpendek titik (4, 2) ke titik pada parabol $ \, y^2 = 8x \, $ adalah ....
Nomor 52. Soal UMPTN MatDas 2001
Turunan dari $ \, y=(1-x)^2(2x+3) \, $ adalah ....
Nomor 53. Soal UMPTN MatDas 2001
Rusuk suatu kubus bertambah panjang dengan laju 7 cm per detik. Laju bertambahnya volume pada saat rusuk panjangnya 15 cm adalah ....
Nomor 54. Soal Simak UI MatDas 2014
Jika $f(2)=3 , \, f^\prime (2)=6, \, g(2)=1 , \, g^\prime(2)=4, \,$ dan $\, h(x)=\frac{f(x)g(x)}{f(x)-g(x)}, \,$ maka $h^\prime(2)=...$
Nomor 55. Soal UMPTN MatDas 2000
Jika nilai maksimum fungsi $ y = x + \sqrt{p-2x} $ adalah 4, maka $ p = .... $
Nomor 56. Soal UMPTN MatDas 2000
Fungsi $ f $ dengan $ f(x) = \frac{x^3}{3} - 4x $ akan naik pada interval ....
Nomor 57. Soal Simak UI Mat IPA 2014
Diketahui suatu barisan aritmatika $\{a_n\}$ memiliki suku awal $a>0$ dan $2a_{10}=5a_{15}$. Nilai $n$ yang memenuhi agar jumlah $n$ suku pertama dari barisan tersebut maksimum adalah ...
Nomor 58. Soal Simak UI Mat IPA 2014
Misalkan $f(1)=2, f^\prime(1)=-1, g(1)=0 $ dan $g^\prime(1)=1$. Jika $F(x)=f(x) \cos (g(x))$ , maka $F^\prime(1)=...$
Nomor 59. Soal SPMB Mat IPA 2007
Misalkan $ f^\prime (x) $ menyatakan turunan pertama dari fungsi $ f(x) = \frac{x^2}{3-x}, \, x \neq 3 , $ jika $ f^\prime (2) $ dan $ \frac{f^\prime (4)}{2} $ adalah suku pertama dan kedua suatu deret geometri tak berhingga, maka jumlah deret tersebut adalah ....
Nomor 60. Soal SPMB Mat IPA 2007
Jika garis singgung di titik (1,2) pada parabola $ y = ax^2 + bx + 4 \, $ memiliki persamaan $ y = -6x+8, \, $ maka nilai $ a \, $ dan $ b \, $ berturut-turut adalah ....

Nomor 61. Soal SPMB Mat IPA 2006
Jika $ \alpha $ dan $ \beta $ berturut-turut merupakan sudut lancip yang dibentuk oleh sumbu X dengan garis singgung $ y = x^2 - 4x - 5 $ di titik dengan absis -1 dan 3, maka $ \tan (\beta - \alpha ) = .... $
Nomor 62. Soal SPMB Mat IPA 2006
Melalui titik ($1, \, -\frac{3}{4}$) dibuat garis singgung pada parabola $ y = \frac{1}{4}x^2 \, $ , absis kedua titik singgungnya adalah ....
Nomor 63. Soal SPMB Mat IPA 2005
Jika $ f(x) = \int \cos ^2 x \, dx \, $ dan $ \, g(x) = xf^\prime (x), \, $ maka $ \, g^\prime \left( x - \frac{\pi}{2} \right) = .... $
Nomor 64. Soal SPMB Mat IPA 2005
Laju pertumbuhan penduduk suatu kota untuk $ t $ tahun yang akan datang dinyatakan sebagai berikut :
$ N(t) = 400t+600\sqrt{t} , \, 0 \leq t \leq 9 . $
Jika penduduk saat ini adalah 5.000 jiwa, maka banyak penduduk 9 tahun yang akan datang adalah ....
Nomor 65. Soal SPMB Mat IPA 2004
$ u(x) \, $ dan $ v(x) \, $ masing - masing merupakan fungsi dengan grafik seperti pada gambar di bawah ini.
spmb_mat_ipa_1_2004.png
Jika $ f(x) = u(x) . v(x) , \, $ maka $ f^\prime (1) = .... $
Nomor 66. Soal SPMB Mat IPA 2003
Jika pada interval $ 0 \leq x \leq 4, \, $ turunan fungsi $ f(x) = 2 - 2\sin \left( \frac{\pi x}{2} \right) \, $ bernilai nol di $ x_1 $ dan $ x_2, \, $ maka $ x_1^2 + x_2^2 = .... $
Nomor 67. Soal SPMB Mat IPA 2003
Jika gambar di bawah ini adalah grafik $ y = \frac{df(x)}{dx} \, $
spmb_mat_ipa_1_2003.png
Maka dapat disimpulkan bahwa fungsi $ f(x) $ .....
A. mencapai nilai maksimum di $ x = 1 $
B. mencapai nilai minimum di $ x = -1 $
C. naik pada interval $ \{x | x < 1 \} $
D. selalu memotong sumbu Y di titik (0,3)
E. merupakan fungsi kuadrat
Nomor 68. Soal SPMB Mat IPA 2002
$ f(x) = 1 + \cos x + \cos ^2 x + \cos ^3 x + ..... \, $ untuk $ 0 < x < \pi $
A. merupakan fungsi naik
B. merupakan fungsi turun
C. mempunyai maksimum saja
D. mempunyai minimum saja
E. mempunyai maksimum dan minimum
Nomor 69. Soal SPMB Mat IPA 2002
Suatu benda bergerak dengan persamaan gerak yang dinyatakan oleh $ s(t) = \frac{1}{3}t^3 - 2t^2 + 6t + 3, \, $ satuan jarak $ s(t) $ dinyatakan dalam meter dan satuan waktu $ t $ dinyatakan dalam detik. Apabila pada saat percepatan menjadi 0, maka kecepatan benda tersebut pada saat itu adalah .....
Nomor 70. Soal UMPTN Mat IPA 2001
Kurva $ y = (x^2+2)^2 \, $ memotong sumbu Y di titik A. Persamaan garis singgung pada kurva tersebut di A adalah .....
Nomor 71. Soal UMPTN Mat IPA 2000
Garis singgung pada kurva $ x^2 - y + 2x - 3 = 0 \, $ yang tegak lurus pada garis $ x-2y+3 = 0 \, $ mempunyai persamaan .....
Nomor 72. Soal UMPTN Mat IPA 2000
Gradien garis singgung suatu kurva di titik ($x,y$) adalah $ 3\sqrt{x} $ . Jika kurva ini melalui titik (4,9), maka persamaan garis singgung kurva ini di titik berabsis 1 adalah ....
Nomor 73. Soal UMPTN Mat IPA 2000
Luas sebuah lingkaran adalah fungsi dari kelilingnya. Jika keliling sebuah lingkaran adalah $ x $ , maka laju perubahan luas lingkaran terhadap kelilingnya adalah ....
Nomor 74. Soal Simak UI MatDas 2014
Jika $g(x)=f \left( r(x)+s(x) \right) $, dengan $r(x)$ dan $s(x)$ masing-masing adalah fungsi yang dapat diturunkan, maka $g^\prime{}^\prime(x) =...$
Nomor 75. Soal Simak UI Mat IPA 2014
Misalkan $f(0)=1$ dan $f^\prime(0)=2$. Jika $g(x)=\cos (f(x))$, maka $g^\prime(0)=...$
Nomor 76. Soal SBMPTN MatDas 2014 Kode 631
Syarat agar fungsi $ f(x) = -x^3 + \frac{1}{2}ax^2 - \frac{1}{2}x^2 - 3x + 8 \, $ selalu turun untuk semua nilai real $ x \, $ adalah ....
Nomor 77. Soal SBMPTN MatDas 2014 Kode 691
Jika $ m \, $ dan $ n \, $ bilangan real dan fungsi $ f(x) = mx^3 + 2x^2 - nx + 5 \, $ memenuhi $ f^\prime (1) = f^\prime (-5) = 0 , \, $ maka $ 3m-n = .... $
Nomor 78. Soal SBMPTN MatDas 2014 Kode 691
Titik-titik P dan Q masing-masing mempunyai absis $ 2p \, $ dan $ -3p \, $ terletak pada parabola $ y = x^2 - 1. \, $ Jiga garis $ g \, $ tegak lurus PQ dan menyinggung parabola tersebut, maka garis $ g \, $ memotong sumbu Y di titik berordinat ....
Nomor 79. Soal SBMPTN Mat IPA 2014 Kode 523
Diketahui suatu parabola simetris terhadap garis $x=-2$, dan garis singgung parabola tersebut di titik (0, 1) sejajar garis $4x+y=4$. Titik puncak parabola tersebut adalah ...
Nomor 80. Soal SBMPTN MatDas 2014 Kode 663
Jika $ f(x) = \frac{ax+b}{x^2 + 1 } \, $ dengan $ f(0) = f^\prime (0) \, $ dan $ f^\prime (-1) = 1, \, $ maka $ a + b = .... $

Nomor 81. Soal SBMPTN Mat IPA 2014 Kode 532
Nilai maksimum $ f(x) = 2x + \sqrt{p-4x} \, $ adalah $ \frac{13}{2} . \, $ Nilai $ f(2) + f^\prime (2) \, $ adalah ....
Nomor 82. Soal SBMPTN Mat IPA 2014 Kode 586
Jika $ f(x) = 2x + \sin 2x \, $ untuk $ -\frac{\pi}{4} < x < \frac{\pi}{4} , \, $ maka $ f^\prime (x) = .... $
(A) $ 4 \displaystyle \sum_{i=0}^\infty ( \tan x )^i $
(B) $ 4 ( 1 - \cos ^2 x ) $
(C) $ 4 \displaystyle \sum_{i=0}^\infty (-1)^i ( \tan x )^{2i} $
(D) $ 4 \displaystyle \sum_{i=0}^\infty ( - \sin x )^{2i} $
(E) $ 4 \cos 2x $
Nomor 83. Soal SBMPTN Mat IPA 2014 Kode 542
Jika $ p \, $ dan $ q \, $ merupakan akar-akar persamaan kuadrat : $ x^2 -(a+1)x + \left( -a-\frac{5}{2} \right) = 0 \, $ maka nilai minimum $ p^2 + q^2 \, $ adalah ....
Nomor 84. Soal UTUL UGM MatDas 2013
Sebuah garis menyinggung grafik $ f(x) = x^2 + 3x - 1 \, $ di titik ($2a-1,b$) dan menyinggung grafik $ g(x) = \frac{1}{3}x^3 + 4x + 1 \, $ di titik ($a,c$). Nilai $ a + b = .... $
Nomor 85. Soal SPMK UB Mat IPA 2010
Petunjuk C digunakan untuk nomor 14 dan 15 .
Diketahui garis $ g \, $ adalah garis singgung kurva $ x^2y=32 \, $ di titik (2,8). Pernyataan berikut yang benar adalah ....
(1). Garis $ g \, $ memotong sumbu X di titik (6,0)
(2). Garis $ g \, $ memotong sumbu Y di titik (0,18)
(3). Luas daerah dibawah garis $ g \, $ pada kuadran pertama adalah 36
(4). Persamaan garis $ g \, $ adalah $ y = -3x + 18 $
Nomor 86. Soal SPMK UB Mat IPA 2014
Jika $f(x) = \left( x^2 + 1 \right) cos^2 (x) $ maka $f^\prime(\pi ) = ...$
Nomor 87. Soal SPMK UB Mat IPA 2009
Petunjuk C digunakan untuk menjawab soal nomor 12 sampai 15.
Diketahui fungsi $ f(x)=\frac{2}{3}x^3 + 4x^2 - 10x \, $. Pernyataan yang benar untuk fungsi tersebut adalah ....
(1). Mempunyai nilai maksimum lokal di $ x = -5 \, $ dan minimum lokal di $ x = 1 $
(2). Mempunyai titik belok di $ x= -2 $
(3). Turun pada interval $ -5 < x < 1 $
(4). Melewati titik (0,0)
Nomor 88. Soal SPMK UB Mat IPA 2008
Garis singgung kurva $ f(x)=x+2\sqrt{x} \, $ di titik (4,8) memotong sumbu X dan sumbu Y masing-masing di titik $ (a,0) \, $ dan $ (0,b) \, $ . Nilai $ a + b = ..... $
Nomor 89. Soal SPMK UB Mat IPA 2008
Petunjuk C digunakan untuk menjawab soal nomor 11 dan 15.
Jika gambar di bawah ini adalah grafik $ y = \frac{df(x)}{dx} \, $ , maka dapat disimpulkan bahawa $ f(x) $
spmk_ub_1_2008
(1). mempunyai nilai minimum lokal pada $ x = -3 $
(2). turun pada interval $ x < -3 $
(3). mempunyai titik belok pada $ x = 5 $
(4). mempunyai nilai maksimum lokal pada $ x = 2 $
Nomor 90. Soal UTUL UGM Mat IPA 2013
Garis $ g \, $ merupakan garis singgung kurva $ y = 2x^2 - x - 1 \, $ dengan gradien $ m. \, $ Jika garis $ g \, $ membentuk sudut $ 45^\circ \, $ terhadap garis $ 2x-y+4=0, \, $ dan $ 0 < m < 2, \, $ maka persamaan $ g \, $ adalah ....
Nomor 91. Soal UTUL UGM Mat IPA 2013
Jika kurva $ f(x) = ax^3 + bx^2 + 1 \, $ mempunyai titik ekstrem (1, -5), maka kurva tersebut naik pada ....
Nomor 92. Soal SBMPTN MatDas 2015 Kode 620
Jika garis $ g \, $ sejajar dengan garis $ y = 2 + x \, $ dan menyinggung kurva $ y = x^2-3x+3 , \, $ maka garis $ g \, $ memotong sumbu-Y di titik ....
Nomor 93. Soal SBMPTN MatDas 2015 Kode 621
Jika garis $ g \, $ sejajar dengan garis $ y = 3 - 2x \, $ dan menyinggung kurva $ y = x^2-4x+2 , \, $ maka garis $ g \, $ memotong sumbu-Y di titik ....
Nomor 94. Soal SBMPTN Mat IPA 2015 Kode 517
Fungsi $ f(x) = \sqrt{\sin ^2 x + \frac{x}{2} + \pi}, \, -\pi < x < 2\pi \, $ turun pada interval ....
Nomor 95. Soal SBMPTN Mat IPA 2015 Kode 517
Diketahui deret geometri takhingga mempunyai jumlah sama dengan nilai maksimum fungsi $ f(x) = -\frac{2}{3}x^3 + 2x + \frac{2}{3} \, $ untuk $ -1 \leq x \leq 2. \, $ Selisih suku kedua dan suku pertama deret geometri tersebut adalah $ -2f^\prime (0). \, $ Rasio deret geometri tersebut adalah ....
Nomor 96. Soal Simak UI MatDas 2015
Misalkan turunan kedua dari $ f(x) = ax^3 + bx^2 + cx \, $ di titik (1,2) adalah 0 dan garis singgung di titik (1,2) tegak lurus dengan garis $ 2y-x = 3, \, $ maka pernyataan berikut yang BENAR adalah ....
(1). nilai dari $ 2a^2 + 3b + c = 6 $
(2). $ f(x) \, $ naik pada interval $ \left( 1 - \frac{\sqrt{6}}{6} , 1 + \frac{\sqrt{6}}{6} \right) $
(3). Jumlah semua nilai $ a, \, b \, $ dan $ c \, $ adalah 2.
(4). $ f(x) \, $ turun pada interval $ x < 1 - \frac{\sqrt{6}}{6} \, $ atau $ x > 1 + \frac{\sqrt{6}}{6} $
Nomor 97. Soal UTUL UGM MatDas 2015
Jika garis $ h \, $ menyinggung kurva $ y = \cos x - \sin x \, $ di titik yang absisnya $ \frac{\pi}{4} , \, $ maka garis $ h \, $ memotong sumbu Y di titik ....
Nomor 98. Soal UTUL UGM MatDas 2015
Diketahui $ xy + ax^2 + bx + c = 0. \, $ Agar $ x+y \, $ memiliki nilai maksimum/minimum relatif, maka ....
Nomor 99. Soal UTUL UGM Mat IPA 2015
Nilai minimum fungsi $ f(x) = 2 \sin x + \cos 2x \, $ pada $ \, 0 \leq x \leq 2\pi \, $ adalah .....
Nomor 100. Soal UTUL UGM Mat IPA 2015
Diketahui fungsi $ f \, $ dengan $ f(1) = 2 \, $ dan $ f^\prime (1) = 1 . \, $ Jika $ g(x) = \frac{\sqrt{1 + x + f(x)}}{f^2(x)} \, $ , dengan $ f^2 (x) = f(x).f(x) , \, $ maka nilai $ g^\prime (1) \, $ adalah ....

Nomor 101. Soal UTUL UGM Mat IPA 2015
Fungsi $ f(x) = x - 2\sqrt{x+a} \, $ mempunyai nilai minimum $ b $ did titik $ x = -4 $ . Nilai $ a + b \, $ adalah ....
Nomor 102. Soal SPMK UB Mat IPA 2015
Diketahui $ f(x) = 6x^2 - 5ax + 2b \, $ dengan $ f(0) = 10 \, $ dan $ f^\prime (2) = - 4. \, $ Nilai $ b - a = .... $
Nomor 103. Soal SPMK UB Mat IPA 2015
Jika tersedia bahan aluminium 1200 cm$^2 \, $ untuk membuat suatu kotak dengan alas berbentuk bujursangkar (persegi) dengan bagian atas terbuka, volume kotak terbesar yang mungkin terbentuk adalah ....
Nomor 104. Soal SPMK UB Mat IPA 2015
Garis singgung kurva $ f(x) = -x^2 + 2\sqrt{x} \, $ di titik (4,-12) memotong sumbu X dan sumbu Y masing-masing di titik $(p,0) $ dan $(0,q)$. Nilai $ q - 5p = .... $
Nomor 105. Soal UTUL UGM MatDas 2010
Kurva $ y = \frac{x^2}{x-1} $ mencapai maksimum relatif di ....
A). $ (2,4) \, $ B). $ (0,0) \, $ C). $ (2,\frac{4}{3}) \, $ D). $ (3,\frac{9}{2}) \, $ E). $ (-2, -\frac{4}{3}) \, $
Nomor 106. Soal UTUL UGM MatDas 2010
Garis singgung kurva $ y = x^4 - x^2 $ di titik $(1,0)$ dan $(-1,0)$ berpotongan di $(a,b)$. Nilai $ a - b = .... $
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 107. Soal UTUL UGM Mat IPA 2016 Kode 581
Jika fungsi $ g(x) = p\sqrt{x^2 - 4} \, $ naik pada $ \{ x \in R | x \leq -2 \} \, $ dan turun pada $ \{ x \in R | x \geq 2 \}$ , maka himpunan semua nilai $ p \, $ yang memenuhi adalah ....
A). $ \emptyset \, $
B). $ \{ p \in R | p \geq 2 \} \, $
C). $ \{ p \in R | p > 0 \} \, $
D). $ \{ p \in R | p < 0 \} \, $
E). $ \{ p \in R | p \leq -2 \} $
Nomor 108. Soal UTUL UGM Mat IPA 2016 Kode 381
Jika $ p $ merupakan bilangan rasional sehingga fungsi $ f(x) = (x-1)^2(3-x^2) \, $ mencapai minimum di $ x = p \, $ , maka $ f(p+1) = .... $
A). $-1 \, $ B). $ 0 \, $ C). $ 1 \, $ D). $ 3 \, $ E). $ 16 $
Nomor 109. Soal UTUL UGM Mat IPA 2016 Kode 381
Titik $(a,b) $ pada kurva $ y = x^2 + 2 \, $ dan mempunyai jarak terdekat ke garis $ y = x \, $ , nilai $ a+ b \, $ yang memenuhi adalah ....
A). $ 2\frac{1}{4} \, $ B). $ 2\frac{1}{2} \, $ C). $ 2\frac{3}{4} \, $ D). $ 3 \, $ E). $ 3\frac{1}{4} $
Nomor 110. Soal UTUL UGM MatDas 2016 Kode 571
Jika garis singgung kurva $ f(x) = \frac{px-q}{(x-1)(x-2)} \, $ di titik $(3,1) \, $ sejajar sumbu-X, maka $ p+q = ..... $
A). $ 10 \, $ B). $ 11 \, $ C). $ 12 \, $ D). $ 13 \, $ E). $ 14 $
Nomor 111. Soal UTUL UGM MatDas 2016 Kode 571
Jika kurva fungsi $ f(x) = x^4 + 2x^3 \, $ mencapai minimum di titik $ (\alpha , \beta ) \, $ maka $ \alpha - \beta = .... $
A). $ \frac{1}{16} \, $ B). $ \frac{3}{16} \, $ C). $ \frac{5}{16} \, $ D). $ \frac{7}{16} \, $ E). $ \frac{9}{16} $
Nomor 112. Soal UTUL UGM MatDas 2016 Kode 371
Garis lurus yang menyinggung kurva $ y = \sqrt[3]{6-x} \, $ di titik $ x = -2 \, $ akan memotong sumbu X di titik ....
A). $ (18,0) \, $ B). $ (19,0) \, $ C). $ (20,0) \, $ D). $ (21,0) \, $ E). $ (22,0) $
Nomor 113. Soal UTUL UGM MatDas 2016 Kode 371
Luas minimum segitiga yang dapat dibentuk oleh garis lurus yang melalui titik (4, 3) dengan sumbu-sumbu koordinat adalah ....
A). $ 12 \, $ B). $ 16 \, $ C). $ 20 \, $ D). $ 24 \, $ E). $ 26 $
Nomor 114. Soal SBMPTN Mat IPA 2016 Kode 245
Nilai konstanta positif $ a $ yang mungkin sehingga $ \frac{451}{50} $ merupakan nilai minimum dari fungsi $ f(x) = (a^2+1)x^2 - 2ax + 10 $ untuk $ x \in \left[ 0, \frac{1}{2}\right] $ adalah ....
A). $ 7 \, $ B). $ 5 \, $ C). $ 4 \, $ D). $ 3 \, $ E). $ 2 $
Nomor 115. Soal SBMPTN Mat IPA 2016 Kode 245
Garis singgung kurva $ y = 3 - x^2 $ di titik $P(-a,b)$ dan $Q(a,b)$ memotong sumbu-Y di titik R. Nilai $ a $ yang membuat segitiga PQR sama sisi adalah ....
A). $ 2\sqrt{3} \, $ B). $ \sqrt{3} \, $ C). $ \frac{1}{2}\sqrt{3} \, $ D). $ \frac{1}{3}\sqrt{3} \, $ E). $ \frac{1}{4}\sqrt{3} $
Nomor 116. Soal SBMPTN Mat IPA 2016 Kode 246
Misalkan $ f(x) = x^3 + 2x^2 + a $ dan $ g(x) = x + a $ berpotongan di sumbu-x, dengan $ a $ bilangan bulat. Nilai minimum dari $ f(x) $ di interval $ -1\leq x \leq 2 $ adalah ....
A). $ -\frac{4}{3} \, $ B). $ -\frac{1}{2} \, $ C). $ 0 \, $ D). $ \frac{1}{2} \, $ E). $ 1 $
Nomor 117. Soal SBMPTN Mat IPA 2016 Kode 247
Diketahui $ f(x) = ax^2 + bx -2 $ mencapai titik maksimum di titik minimum $ g(x) = 4x^3 - 3x + 3 $. Nilai $ a + b = .... $
A). $ -16 \, $ B). $ -8 \, $ C). $ 0 \, $ D). $ 8 \, $ E). $ 16 $
Nomor 118. Soal SBMPTN Mat IPA 2016 Kode 247
Diketahui $ x_1, x_2 $ adalah akar-akar dari persamaan $ x^2 + 5ax + a^3 - 4a + 1 = 0 $. Nilai $ a $ sehingga $ x_1 + x_1x_2 +x_2 $ maksimum pada interval $[-3,3]$ adalah ...
A). $ -3 \, $ B). $ -\sqrt{3} \, $ C). $ 0 \, $ D). $ \sqrt{3} \, $ E). $ 3 $
Nomor 119. Soal SBMPTN Mat IPA 2016 Kode 248
Diketahui $ f(x) = x^3 - ax + \frac{2}{3}a $ dan $ f(x) $ memotong sumbu x di titik $ x = 1 $ . Nilai maksimum $ f(x) $ untuk $ 0 \leq x \leq 1 $ adalah ....
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 120. Soal SBMPTN Mat IPA 2016 Kode 249
Jika $ f(x) = x^3 - 3x^2 + a $ memotong sumbu Y di titik (0,10), maka nilai minimum $ f(x) $ untuk $ x \in [0,1]$ adalah ....
A). $ 10 \, $ B). $ 8 \, $ C). $ 6 \, $ D). $ 4 \, $ E). $ 3 $

Nomor 121. Soal SBMPTN Mat IPA 2016 Kode 250
Diketahui fungsi $ f(x) = x^3 + bx^2 + cx + d $ pada interval $[-4,2]$ memotong sumbu X di $ -2 $ dan memotong sumbu Y di 26. Jika diketahui $ f^{\prime \prime }(-3) = 0 $, maka nilai minimum $ f(x) $ adalah ....
A). $ -3 \, $ B). $ -2 \, $ C). $ -1 \, $ D). $ 2 \, $ E). $ 3 $
Nomor 122. Soal SBMPTN Mat IPA 2016 Kode 251
Garis $ l $ adalah garis singgung sekutu parabola $ y = x^2 - 4x + 7 $ dan $ y = p - 3(x+2)^2 $. Jika garis $ l $ menyinggung parabola $ y = x^2 - 4x + 7 $ di $ x = 5 $, maka $ p = .... $
A). $ -35 \, $ B). $ -33 \, $ C). $ -26 \, $ D). $ -21 \, $ E). $ -10 $
Nomor 123. Soal SBMPTN Mat IPA 2016 Kode 252
Fungsi $ f(x) = \sec ^2 x - \tan x \sec x $ untuk $ 0 < x < 2\pi , \, x \neq \frac{\pi}{2} $ dan $ x \neq \frac{3\pi}{2} $ naik pada interval ....
A). $ 0 < x < 90^\circ \vee 90^\circ < x < 180^\circ \, $
B). $ 0 < x < 90^\circ \vee 270^\circ < x < 360^\circ \, $
C). $ 90^\circ < x < 180^\circ \, $
D). $ 90^\circ < x < 270^\circ \, $
E). $ 90^\circ < x < 300^\circ \, $
Nomor 124. Soal SBMPTN Mat IPA 2016 Kode 252
Misalkan $ f(x) = 3x^4 - 4x^3 + 2 $ . Jika nilai minimum dan maksimum $ f(x) $ pada selang $ -2 \leq x \leq 2 $ berturut-turut adalah $ m $ dan $M $ , maka $ m + M = .... $
A). $ 3 \, $ B). $ 19 \, $ C). $ 20 \, $ D). $ 83 \, $ E). $ 100 $
Nomor 125. Soal SBMPTN Mat IPA 2016 Kode 252
Nilai $ k $ antara $ 0 $ dan $ \pi $ yang membuat $ \int_0^k \sin ^2 x \cos x dx \, $ maksimum adalah ....
A). $ \frac{\pi}{6} \, $ B). $ \frac{\pi}{5} \, $ C). $ \frac{\pi}{4} \, $ D). $ \frac{\pi}{3} \, $ E). $ \frac{\pi}{2} $
Nomor 126. Soal UTUL UGM MatDas 2009
Jika $ f(x) = x\sqrt{1-x} $ , maka nilai $ a $ yang memenuhi $ f^\prime (a) = 1 $ adalah ....
A). $ 0 \, $ B). $ \frac{8}{9} \, $ C). $ 0 \, $ dan $ \frac{8}{9} $
D). $ 0 \, $ dan $ -\frac{8}{9} $ E). $ -\frac{8}{9} \, $ dan $ \frac{8}{9} $
Nomor 127. Soal UTUL UGM MatDas 2009
Jika grafik di bawah merupakan grafik fungsi $ y = f^\prime (x) $ , maka

A). $ f \, $ mencapai maksimum relatif di $ x = -1 $
B). $ f \, $ mencapai minimum relatif di $ x = 1 $
C). $ f \, $ mencapai maksimum relatif di $ x = -3 $ dan $ x = 1 $
D). $ f \, $ mencapai maksimum relatif di $ x = -3 $ dan $ x = 2 $
E). $ f \, $ mencapai minimum relatif di $ x = -3 $ dan $ x = 2 $
Nomor 128. Soal UTUL UGM Mat IPA 2010
Diketahui $ f(x) = g\left( x - \sqrt{6x-2} \right) $. Jika $ f^\prime (3) = 6 $ , maka $ g^\prime (-1) = .... $
A). $ 12 \, $ B). $ 16 \, $ C). $ 20 \, $ D). $ 24 \, $ E). $ 28 $
Nomor 129. Soal SBMPTN Mat IPA 2017 Kode 165
Misalkan $ f(x) = \sin (\sin x. \cos x ) $ , maka $ f^\prime (x) = .... $
A). $ \cos ( \sin x . \cos x ) \, $
B). $ \sin (\cos ^2 x - \sin ^2 x) \, $
C). $ \cos (\sin x) . \cos x ( \cos x) \, $
D). $ \cos 2x . \cos \left( \frac{1}{2} \sin 2x \right) \, $
E). $ \sin 2x . \cos (\sin x . \cos x) $
Nomor 130. Soal SBMPTN Mat IPA 2017 Kode 165
Jika garis singgung dari kurva $ y = px^3 - qx^2 + 1 $ di $ x = 2 $ adalah $ y - 2x + 5 = 0 $ , maka $ 2pq = .... $
A). $ 5 \, $ B). $ 4 \, $ C). $ 3 \, $ D). $ 2 \, $ E). $ 1 $
Nomor 131. Soal SBMPTN Mat IPA 2017 Kode 166
Misalkan $ f(x) = \cos (\cos ^2 x ) $ , maka $ f^\prime (x) = .... $
A). $ 2\sin x. \sin (\cos ^2x) \, $
B). $ 2\sin 2x. \sin (\cos ^2x) \, $
C). $ \sin 2x. \sin (\cos ^2x) \, $
D). $ \sin ^2 x. \sin (\cos ^2x) \, $
E). $ 2\sin ^2x. \sin (\cos ^2x) $
Nomor 132. Soal SBMPTN Mat IPA 2017 Kode 167
Misalkan $ f(x) = \sin (\sin ^2 x ) $ , maka $ f^\prime (x) = .... $
A). $ 2\sin x. \cos (\sin ^2x) \, $
B). $ 2\sin 2x. \cos (\sin ^2x) \, $
C). $ \sin ^2 x. \cos (\sin ^2x) \, $
D). $ \sin ^2 2 x. \cos (\sin ^2x) \, $
E). $ \sin 2x. \cos (\sin ^2x) $
Nomor 133. Soal SBMPTN Mat IPA 2017 Kode 167
Jika garis $ y = 7x - 16 $ menyinggung kurva $ y = px^3 + qx $ di $ x = 2 $, maka $ p - q = ..... $
A). $ 2 \, $ B). $ 4 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 8 \, $

Nomor 134. Soal SBMPTN Mat IPA 2017 Kode 168
Misalkan $ f(x) = 2\tan \left( \sqrt{\sec x} \right) $ , maka $ f^\prime (x) = .... $
A). $ \sec ^2 \left( \sqrt{\sec x} \right) . \tan x \, $
B). $ \sec ^2 \left( \sqrt{\sec x} \right) . \sqrt{\sec x}. \tan x \, $
C). $ 2\sec ^2 \left( \sqrt{\sec x} \right) . \sqrt{\sec x} . \tan x \, $
D). $ \sec ^2 \left( \sqrt{\sec x} \right) . \sec x . \tan x \, $
E). $ 2\sec ^2 \left( \sqrt{\sec x} \right) . \sec x . \tan x $
Nomor 135. Soal SBMPTN Mat IPA 2017 Kode 168
Garis singgung dari $ f(x) = \frac{1}{x^2 \cos x} $ di titik $ x = \pi $ memotong garis $ y = x + c $ di titik $(\pi, 0 )$. Nili $ c $ adalah ....
A). $ -\frac{1}{4}\pi \, $ B). $ -\frac{1}{2}\pi \, $ C). $ -\pi \, $ D). $ \frac{1}{2}\pi \, $ E). $ \pi \, $
Nomor 136. Soal SBMPTN MatDas 2017 Kode 224
Seseorang memelihara ikan di suatu kolam. Rata-rata bobot ikan per ekor pada saat panen dari kolam tersebut adalah $(6-0,02x) \, $ kg, dengan $ x $ menyatakan banyak ikan yang dipelihara. Maksimum total bobot semua ikan pada saat panen yang mungkin adalah .... kg.
A). $ 400 \, $ B). $ 420 \, $ C). $ 435 \, $ D). $ 450 \, $ E). $ 465 $
Nomor 137. Soal UTUL UGM MatDas 2017 Kode 723
Fungsi dengan persamaan $ f(x) = \frac{2x+a}{x + 2b} $ memenuhi $ f^\prime (1) = 1 $ dan $ f(b) = -\frac{2}{3} $. Nilai $ b $ yang memenuhi adalah ....
A). $ -1 \, $ B). $ -\frac{4}{5} \, $ C). $ -\frac{2}{3} \, $ D). $ -\frac{1}{4} \, $ E). $ \frac{1}{2} $
Nomor 138. Soal UTUL UGM MatDas 2017 Kode 723
Fungsi $ f(x) = \frac{\sqrt{x^2+4}}{3} - \frac{x}{5} $ mencapai minimum relatif di $ x = .... $
A). $ \frac{5}{2} \, $ B). $ \frac{3}{2} \, $ C). $ \frac{2}{3} \, $ D). $ \frac{1}{2} \, $ E). $ \frac{2}{5} $
Nomor 139. Soal UTUL UGM Mat IPA 2017 Kode 713
Jika $ {}^3 \log x + {}^4 \log y^2 = 5 $, maka nilai maksimum dari $ {}^3 \log x . {}^2 \log y $ adalah ....
A). $ \frac{25}{4} \, $ B). $ \frac{25}{9} \, $ C). $ \frac{25}{16} \, $ D). $ 1 \, $ E). $ \frac{25}{36} $
Nomor 140. Soal UTUL UGM Mat IPA 2017 Kode 713
Diketahui $ f(0)=1 $ dan $ f^\prime (0) = 2 $. Jika $ g(x) = \frac{1}{(2f(x)-1)^3} $ , maka $ g^\prime (0) = .... $
A). $ -12 \, $ B). $ -6 \, $ C). $ 6 \, $ D). $ 8 \, $ E). $ 12 $
Nomor 141. Soal UTUL UGM MatDas 2017 Kode 823
Jika $ f(x) = \frac{8x^2}{( 4-x)^2} $ , maka nilai $ \frac{f^\prime (2)}{f(x)} = .... $
A). $ 3 \, $ B). $ 2 \, $ C). $ \frac{3}{2} \, $ D). $ \frac{1}{2} \, $ E). $ 0 $
Nomor 142. Soal UTUL UGM MatDas 2017 Kode 823
Garis singgung kurva $ y = \frac{15x-1}{x+k} $ di titik $(x_0,y_0) $ dengan $ x_0 = k + 1 $ memotong sumbu X di $(\frac{1}{2} , 0 ) $. Nilai $ y_0 = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 5 \, $ D). $ \frac{45}{2} \, $ E). $ 45 $
Nomor 143. Soal UTUL UGM Mat IPA 2017 Kode 814
DIberikan garis lurus melalui $(0,-2) $ dan $\left( \frac{3}{2} , 0 \right) $. Jarak parabola $ y = x^2 - 1 $ ke garis tersebut adalah ....
A). $ \frac{5}{6} \, $ B). $ \frac{2}{3} \, $ C). $ \frac{1}{2} \, $ D). $ \frac{1}{3} \, $ E). $ \frac{1}{6} $
Nomor 144. Soal UTUL UGM Mat IPA 2017 Kode 814
Diketahui suatu deret tak hingga $ \sin 2x \sin ^2x + \sin 2x \sin ^4 x + \sin 2x \sin ^6 x + ...$, $ 0 < x \leq \frac{\pi}{4} $. Nilai maksimum deret tak hingga tersebut adalah ....
A). $ 32 \, $ B). $ 16 \, $ C). $ 8 \, $ D). $ 4 \, $ E). $ 1 $
Nomor 145. Soal UTUL UGM Mat IPA 2017 Kode 814
Jika $ f\left( \frac{2x+1}{x-3} \right) = x^2 + 2x - 3 $ , maka nilai dari $ f^\prime (0) $ adalah ....
A). $ -2\frac{1}{4} \, $ B). $ -2 \, $ C). $ -1\frac{3}{4} \, $ D). $ -1\frac{1}{4} \, $ E). $ -1 $
Nomor 146. Soal UTUL UGM Mat IPA 2017 Kode 814
Diketahui dua bilangan real positif $ x $ dan $ y $. Jika $ x + 2y = 20 $, maka nilai maksimum dari $ x^2y $ adalah .....
A). $ \frac{16000}{9} \, $ B). $ \frac{16000}{27} \, $ C). $ \frac{4000}{27} \, $ D). $ \frac{1600}{27} \, $ E). $ \frac{400}{9} $
Update bulan November 2017 "kumpulan soal-soal Matematika Seleksi Masuk PTN" dilengkapi dengan pembahasannya.

Nomor 147. Soal UM UGM 2009 Mat IPA
Fungsi $ f(x) = x^3 + 3kx^2 - 9k^2x - 4 $ turun dalam selang $ -2 < x < 6 $ jika $ k = .... $
A). $ -1 \, $ B). $ -2 \, $ C). $ 1 \, $ D). $ 2 \, $ E). $ 3 $
Nomor 148. Soal UM UGM 2007 MatDas
Fungsi $ y = 2x + 3\sqrt[3]{x^2} \, $ mencapai maksimum untuk $ x $ bernilai ....
A). $ 2 \, $ B). $ 1 \, $ C). $ 0 \, $ D). $ -1 \, $ E). $ -2 $
Nomor 149. Soal UM UGM 2007 MatDas
Jika nilai maksimum fungsi $ f(x) = x + \sqrt{a - 3x} $ adalah 1, maka $ a = .... $
A). $ \frac{-3}{4} \, $ B). $ \frac{-1}{4} \, $ C). $ 0 \, $ D). $ \frac{1}{2} \, $ E). $ \frac{3}{4} $
Nomor 150. Soal UM UGM 2007 Mat IPA
Jumlah tiga buah bilangan adalah 135. Diketahui bilangan ke-2 sama dengan dua kali bilangan ke-1. Agar hasil kali ketiga bilangan maksimum, maka selisih bilangan ke-1 dan bilangan ke-3 adalah ....
A). $ 95 \, $ B). $ 55 \, $ C). $ 35 \, $ D). $ 15 \, $ E). $ 5 $
Nomor 151. Soal UM UGM 2006 MatDas
Jika $ f(x) = \frac{\cos x - \sin x}{\cos x + \sin x} $ dengan $ \cos x + \sin x \neq 0 $, maka $ f^\prime (x) = .... $
A). $ 1 - (f(x))^2 \, $
B). $ -1 + (f(x))^2 \, $
C). $ -(1 + (f(x))^2) \, $
D). $ 1 + (f(x))^2 \, $
E). $ (f(x))^2 $
Nomor 152. Soal UM UGM 2006 MatDas
Jika $ y = \left( a^\frac{2}{3} - x^\frac{2}{3} \right)^\frac{3}{2} $ , maka $ \frac{dy}{dx} \, $ adalah
A). $ -1 $ B). $ -\frac{3}{2}\sqrt[3]{a^2 - x^2} $ C). $ -\sqrt{\frac{a^2}{x^2} - 1} $
D). $ -\sqrt{\sqrt[3]{\frac{a^2}{x^2}} - 1} $ E). $ -\sqrt{\sqrt[3]{\frac{a^2}{x^2} - 1 }} $
Nomor 153. Soal UM UGM 2006 MatDas
Jika fungsi $ y = x^3 - 3x + 3 $ didefinisikan pada $ -\frac{3}{2} \leq x \leq \frac{5}{2} $ , maka nilai terbesar dari $ y $ adalah .....
A). $ 3 \, $ B). $ 4\frac{1}{8} \, $ C). $ 5 \, $ D). $ 11\frac{1}{8} \, $ E). $ 15\frac{1}{8} \, $
Nomor 154. Soal UM UGM 2006 Mat IPA
Grafik fungsi $ f(x) = \frac{x^2}{x-1} $ naik untuk nilai-nilai : ....
A). $ 0 < x < 1 \, $ atau $ x > 2 $
B). $ x < 0 \, $ atau $ 1 < x < 2 $
C). $ x < 0 \, $ atau $ x > 2 $
D). $ 0 < x < 2 \, $
E). $ x < 1 \, $ atau $ x > 2 $
Nomor 155. Soal UM UGM 2005 MatDas
Jika diberikan fungsi dengan rumus $ f(x) = x\sqrt{x+1} $, maka daerah dengan fungsi $ f $ naik adalah ....
A). $ -1 \leq x \leq -\frac{2}{3} \, $
B). $ x \leq -1 \, $
C). $ -1 \leq x < -\frac{2}{3} \, $
D). $ x > -\frac{2}{3} \, $
E). $ x > \frac{2}{3} \, $
Nomor 156. Soal UM UGM 2005 MatDas
Jika $ f(x) = \sqrt{1 + \sin ^2 x} $ , $ 0 \leq x \leq \pi $ , maka $ f^\prime (x) . f(x) $ sama dengan ....
A). $ (1+\sin ^2 x)\sin x \cos x \, $
B). $ (1+\sin ^2 x) \, $
C). $ \sin x \cos x \, $ D). $ \sin x \, $
E). $ \frac{1}{2} \, $
Nomor 157. Soal UM UGM 2005 MatDas
Turunan dari $ f(x) = \frac{x^2-7}{x\sqrt{x}} \, $ adalah ....
A). $ \frac{x^2 + 21}{2x^2\sqrt{x}} \, $
B). $ \frac{x^2 + 21}{x^2\sqrt{x}} \, $
C). $ \frac{x^2 - 21}{2x^2\sqrt{x}} \, $
D). $ \frac{x^2}{x^2\sqrt{x} + 21} \, $
E). $ \frac{x^2 + 21}{2x\sqrt{x}} \, $
Nomor 158. Soal UM UGM 2005 Mat IPA
Persamaan garis singgung kurva $ y = \sqrt{4 - x^2} $ yang sejajar dengan garis lurus $ x + y - 4 = 0 $ adalah ....
A). $ x + y = 0 \, $
B). $ x + y - \sqrt{2} = 0 \, $
C). $ x + y + \sqrt{2} = 0 \, $
D). $ x + y - 2\sqrt{2} = 0 \, $
E). $ x + y +2 \sqrt{2} = 0 \, $
Nomor 159. Soal UM UGM 2005 Mat IPA Kode 612
Sebuah segitiga siku-siku kelilingnya $ 3\sqrt{2} $. Nilai minimum panjang sisi miringnya adalah ....
A). $ 7\frac{1}{2} - 3\sqrt{2} \, $
B). $ 7 - 3\sqrt{2} \, $
C). $ 7 - 4\sqrt{2} \, $
D). $ 6 - 3\sqrt{2} \, $
E). $ 6 - 4\sqrt{2} $
Nomor 160. Soal UM UGM 2005 Mat IPA Kode 612
Jika $ f(x) = \frac{\sqrt{x}}{x^2 + 1} $ , maka fungsi $ f $ naik pada selang ....
A). $ \left( -\frac{\sqrt{3}}{3} , 0 \right) \, $
B). $ \left( 0, \frac{\sqrt{3}}{3} \right) \, $
C). $ \left( -\frac{\sqrt{3}}{3} , \frac{\sqrt{3}}{3} \right) \, $
D). $ \left( -\frac{\sqrt{3}}{3} , \infty \right) \, $
E). $ \left( \frac{\sqrt{3}}{3} , \infty \right) \, $
Nomor 161. Soal UM UGM 2004 MatDas
Fungsi $ f(x) = \left(\frac{1}{\sin x}-\frac{1}{\tan x}\right)(1+\cos x) $ mempunyai turunan ....
A). $ \cos x \, $ B). $ \sin x \, $ C). $ -\cos x \, $
D). $ -\sin x \, $ E). $ \sin 2x $
Nomor 162. Soal UM UGM 2004 MatDas
Persamaan garis singgung kurva $ y = x^2 $ di titik potong kurva tersebut dengan kurva $ y = \frac{1}{x} $ adalah ....
A). $ y + 2x + 1 = 0 \, $
B). $ y + 2x - 1 = 0 \, $
C). $ y - 2x + 1 = 0 \, $
D). $ y - 2x - 1 = 0 \, $
E). $ 2y - x + 1 = 0 \, $
Nomor 163. Soal UM UGM 2003 MatDas
Jika fungsi $ f(x) = x^3 + px^2 - 9x $ hanya didefinisikan untuk nilai-nilai $ x $ yang memenuhi $ -6 \leq x \leq 0 $ dan mencapai nilai maksimum pada saat $ x = -3 $ , maka nilai $ p $ adalah ....
A). $ 6 \, $ B). $ -6 \, $ C). $ 2 \, $ D). $ -2 \, $ E). $ 3 \, $
Nomor 164. Soal UM UGM 2003 MatDas
Diketahui $ f(x) = ax^2 + bx + 4 $. Jika gradien garis singgung kurva di $ x = 2 $ adalah $ -1 $ dan di $ x = 1 $ adalah $ 3 $, maka $ a + b = ..... $
A). $ 9 \, $ B). $ 7 \, $ C). $ 5 \, $ D). $ 2 \, $ E). $ 0 \, $
Nomor 165. Soal UM UGM 2003 MatDas
Jika $ f(x) = \frac{1}{\sqrt{x}} $ maka $ -2f^\prime (x) $ sama dengan ....
A). $ \frac{1}{x\sqrt{x}} \, $ B). $ x\sqrt{x} \, $ C). $ -\frac{1}{2x\sqrt{x}} \, $
D). $ -\frac{1}{2\sqrt{x}} \, $ E). $ -2x\sqrt{x} \, $
Nomor 166. Soal UM UGM 2003 Mat IPA
Diketahui grafik suatu fungsi $ y = f(x) $ yang mendatar sesaat untuk $ x = 6 $ sebagai berikut.
Grafik $ f^\prime (x) $ disekitar $ x = 6 $ akan terlihat sebagai berikut ....
       Demikian Kumpulan Soal Turunan Seleksi Masuk PTN lengkap dengan pembahasannya. Semoga artikel ini bermanfaat untuk kita semua. Kumpulan Soal Turunan Seleksi Masuk PTN ini akan terus kami update untuk soal-soal tahun lainnya. Jika ada kritik dan saran, langsung saja ketikkan komentar pada kolom kontar di bagian bawah setiap artikel. Silahkan juga pelajari kumpulan soal lain pada "Kumpulan Soal Matematika Per Bab Seleksi Masuk PTN". Terima Kasih.