Tampilkan posting dengan label geometri bidang datar. Tampilkan semua posting
Tampilkan posting dengan label geometri bidang datar. Tampilkan semua posting

Selasa, 05 Januari 2016

Panjang Garis Bagi pada Segitiga dan Pembuktiannya

         Blog Koma - Garis istimewa segitiga terakhir yang kita bahas kali ini adalah garis bagi. Pada materi Panjang Garis Bagi pada Segitiga dan Pembuktiannya ini kita akan membahas teorinya, contoh-contoh soal, dan tentu pembuktiannya rumus yang ada yang berkaitan dengan panjang garis bagi. Silahkan baca juga materi "Dalil Stewart" dan "aturan cosinus" yang digunakan untuk membuktikan rumus panjang garis bagi ini.

Menentukan Panjang Garis Bagi pada Segitiga
       Garis bagi sebuah segitiga adalah garis yang ditarik dari titik sudut segitiga memotong sisi didepan titik sudut tersebut dengan membagi dua sama besar suudut tersebut, seperti gambar berikut.
Dalil-dalil yang berlaku pada garis bagi segitiga yaitu :
1). Garis bagi segitiga (garis AD,BE,dan CF) berpotongan pada satu titik yang disebut titik bagi (titik O).

2). Garis bagi sudut sebuah segitiga membagi sisi yang didepannya menjadi dua bagian yang rasio panjangnya sama dengan rasio sisi-sisi yang berdekatan dengan bagian tersebut, perbandingan yang dimaksud yaitu $ BD : DC = AB : AC $.

3). Titik bagi sebuah segitiga merupakan titik pusat lingkaran dalam segitiga seperti gambar berikut.
4). Menentukan panjang garis bagi dengan rumus berikut,
Menentukan panjang garis bagi.
perhatikan gambar garis bagi berikut,
Misalkan panjang garis bagi $ AD = d , \, $
menentukan panjang $ d \, $ dengan rumus : $ \, d^2 = bc - mn $
dengan $ m : n = c : b $
sehingga $ m = \frac{c}{ b+ c} \times a \, $ dan $ n = \frac{b}{ b+ c} \times a $

Contoh soal garis bagi segitiga :
1). Segitiga ABC siku-siku di A dengan panjang AB = 3 cm dan BC = 4 cm. Dari titik sudut A ditarik garis bagi AD. Tentukan panjang AD!
Penyelesaian :
*). Ilustrasi gambar segitiga ABC dan garis bagi AD.
*). Dengan pythagoras, maka kita peroleh panjang BC = 5 cm.
*). Menentukan panjang $ m \, $ dan $ n $.
$ \frac{m}{n} = \frac{3}{4} $, dari perbandingan ini maka,
$ m = \frac{3}{7}.BC = \frac{3}{7}.5 = \frac{15}{7} $.
$ n = \frac{4}{7}.BC = \frac{4}{7}.5 = \frac{20}{7} $.
*). Menentukan panjang AD,
$ \begin{align} d^2 & = bc - mn \\ & = 4.3 - \frac{15}{7} . \frac{20}{7} \\ & = 12 - \frac{300}{49} \\ & = \frac{588}{49} - \frac{300}{49} \\ d^2 & = \frac{288}{49} \\ d & = \sqrt{\frac{144.2}{49} } \\ d & = \frac{12}{7}\sqrt{2} \end{align} $
Jadi, panjang garis bagi $ AD = d = \frac{12}{7}\sqrt{2} \, $ cm.

2). Sebuah segitiga ABC dengan AB = 21 cm, BC = 18 cm, dan AC = 12 cm. CD adalah garis bagi. E adalah titik tengah BC. Hitunglah panjang DE!
Penyelesaian :
*). Ilustrasi gambarnya,
*). Menentukan panjang garis bagi CD.
Perbandingan : $ \frac{m}{n} = \frac{18}{12} = \frac{3}{2} $,
Sehingga $ m = \frac{3}{5}AB = \frac{3}{5}.21 = \frac{63}{5} $
dan $ DB = n = \frac{2}{5}AB = \frac{2}{5}.21 = \frac{42}{5} $
Panjang CD :
$ \begin{align} CD^2 & = CA.CB - mn \\ CD^2 & = 12.18 - \frac{63}{5} . \frac{42}{5} \\ CD^2 & = \frac{2754}{25} \end{align} $
*). Titik E ada di tengah BC, artinya DE adalah garis berat pada segitiga BDC.
Panjang garis berat DE pada segitiga BDC,
$ \begin{align} DE^2 & = \frac{1}{2}.CD^2 + \frac{1}{2}.DB^2 - \frac{1}{4}.BC^2 \\ DE^2 & = \frac{1}{2}. \frac{2754}{25} + \frac{1}{2}. (\frac{42}{5})^2 - \frac{1}{4}.12^2 \\ DE^2 & = \frac{1377}{25} + \frac{882}{25} - 36 \\ DE^2 & = \frac{2259}{25} - 36 \\ DE^2 & = \frac{2259}{25} - \frac{900}{25} \\ DE^2 & = \frac{1359}{25} = \frac{9 . 151}{25} \\ DE & = \sqrt{ \frac{9 . 151}{25} } \\ DE & = \frac{3}{5}\sqrt{ 151} \end{align} $
Jadi, panjang $ DE = \frac{3}{5}\sqrt{ 151} \, $ cm.

3). Diketahui segitiga ABC dengan panjang AB = 3 cm dan BC = 6 cm. Jika garis berat AD, garis bagi BE, dan garis tinggi CF berpotongan pada satu titik O, maka tentukan panjang AC!
Penyelesaian :
*). Ilustrasi gambar segitiga ABC,
*). Garis BE adalah garis bagi, sehingga perbandingan AE : EC ,
$ \frac{AE}{EC} = \frac{AB}{BC} = \frac{3}{6} = \frac{1}{2} $.
*). Ketiga garis berptongan pada satu titik, maka berlaku dalil Ceva pada segitiga ABC,
$ \begin{align} \frac{AF}{FB}. \frac{BD}{DC} . \frac{CE}{EA} & = 1 \\ \frac{AF}{FB}. 1 . \frac{2}{1} & = 1 \\ \frac{AF}{FB} & = \frac{1}{2} \end{align} $
Dari perbandingan AF : FB = 1 : 2, maka
$ AF = \frac{1}{3} AB = \frac{1}{3}. 3 = 1 $
dan $ FB = \frac{2}{3} AB = \frac{2}{3}. 3 = 2 $
*). Gari CF adalah garis tinggi, sehingga berlaku dalil proyeksi garis tingi CF,
$ \begin{align} BC^2 & = AC^2 + AB^2 - 2.AF.AB \\ 6^2 & = AC^2 + 3^2 - 2.1.3 \\ 36 & = AC^2 + 9 - 6 \\ AC^2 & = 33 \\ AC & = \sqrt{33} \end{align} $
Jadi, panjang $ AC = \sqrt{33} \, $ cm.

Pembuktian dalil (2) garis bagi segitiga
Dalil (2) garis berat berbunyi :
       Garis bagi sudut sebuah segitiga membagi sisi yang didepannya menjadi dua bagian yang rasio panjangnya sama dengan rasio sisi-sisi yang berdekatan dengan bagian tersebut, perbandingan yang dimaksud yaitu $ BD : DC = AB : AC $.

Perhatikan gambar segitiga garis begi berikut,
Kita tari garis tinggi dari titik D yaitu garis tinggi DE dan DF.
*). Perhatikan segitiga ADF dan segitiga ADE,
Sudut FAD = sudut EAD (sudut sama),
Sudut AFD = sudut AED (sudut sama),
Sisi AD beripit pada kedua segitiga (sisi sama).
Karena memenuhi sudut-sudut-sisi (yang sama pada kedua segitiga), maka segitiga ADF dan segitiga ADE kongruen (bentuk dan ukuran sama). Sehingga panjang garis tinggi DE = DF.
*). Perhatikan segitiga ABD dan segitiga ACD,
Perbandingan luasnya : ingat DE = DF,
$ \frac{\text{Luas ABD}}{\text{Luas ACD}} = \frac{\frac{1}{2}AB.DF}{\frac{1}{2}AC.DF} = \frac{AB}{AC} \, $ ....pers(i)
*). Segitiga ABD dengan alas BD dan segitiga ACD dengan alas DC mempunyai tinggi yang sama, misalkan $ t_1 $.
$ \frac{\text{Luas ABD}}{\text{Luas ACD}} = \frac{\frac{1}{2}BD.t_1}{\frac{1}{2}DC.t_1} = \frac{BD}{DC} = \frac{m}{n} \, $ ....pers(ii)
Dari pers(i) dan pers(ii) kita peroleh : $ \frac{m}{n} = \frac{AB}{AC} \, $ atau $ \frac{m}{n} = \frac{c}{b} $.
Jadi terbukti untuk dalil (2) garis bagi segitiga.
Pembuktian Panjang Garis Bagi dengan Aturan Cosinus
       Untuk materi aturan cosinus, silahkan baca langsung materinya pada artikel "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga".
Perhatikan segitiga ABC berikut.
Besar sudut BAD = sudut CAD = $ x $.
Perbandingan sisi : $ \frac{m}{n} = \frac{c}{b} \rightarrow bm = cn \, $ ....pers(i).
*). Aturan Cosinus pada segitiga ABD,
$ m^2 = d^2 + c^2 - 2.d.c .\cos x , \, $ kalikan $ b $ kedua ruas,
$ \rightarrow b.m^2 = b.d^2 + b.c^2 - 2.b.d.c .\cos x \, $ ....pers(ii).
*). Aturan Cosinus pada segitiga ACD,
$ n^2 = d^2 + b^2 - 2.d.b .\cos x , \, $ kalikan $ c $ kedua ruas,
$ \rightarrow c.n^2 = c.d^2 + c.b^2 - 2.d.b .c.\cos x \, $ ....pers(iii).
*). Eliminasi pers(ii) dan pers(iii) :
$ \begin{array}{cc} b.m^2 = b.d^2 + b.c^2 - 2.b.d.c .\cos x & \\ c.n^2 = c.d^2 + c.b^2 - 2.d.b .c.\cos x & - \\ \hline b.m^2 - c.n^2 = d^2(b-c) - bc(b-c) & \end{array} $
Substitusi bentuk pers(i) : $ bm = cn $
$ \begin{align} b.m^2 - c.n^2 & = d^2(b-c) - bc(b-c) \\ (bm).m - (cn).n & = d^2(b-c) - bc(b-c) \\ (cn).m - (bm).n & = d^2(b-c) - bc(b-c) \\ -mn(b-c) & = d^2(b-c) - bc(b-c) \, \, \, \, \, \text{(bagi dg } b-c) \\ -mn & = d^2 - bc \\ d^2 & = bc - mn \end{align} $
Jadi, terbukti panjang garis bagi $ \, AD = d \, $ adalah
$ d^2 = bc - mn $ .
Pembuktian Panjang Garis Bagi dengan Dalil Stewart
Perhatikan segitiga ABC berikut.
Perbandingan sisi : $ \frac{m}{n} = \frac{c}{b} \rightarrow bm = cn. $
dan panjang $ m + n = a $ .
*). Dalil Stewart pada segitiga ABC dan substitusi $ bm = cn $.
$ \begin{align} d^2 . a & = m.b^2 + n.c^2 - m.n.a \\ d^2 . a & = (bm).b + (cn).c - m.n.a \\ d^2 . a & = (cn).b + (bm).c - m.n.a \\ d^2 . a & = bc(m+n) - m.n.a \\ d^2 . a & = bc.a - m.n.a \, \, \, \, \, \text{(bagi dg } a) \\ d^2 & = bc - mn \end{align} $
Jadi, terbukti panjang garis bagi $ \, AD = d \, $ adalah
$ d^2 = bc - mn $ .

Panjang Garis Berat pada Segitiga dan Pembuktiannya

         Blog Koma - Salah satu jenis garis istimewa adalah garis berat. Pada artikel kali ini kita akan maembahas Panjang Garis Berat pada Segitiga dan Pembuktiannya. Silahkan juga baca materi "Dalil Stewart pada Segitiga" karena materi ini penting dalam membuktikan rumus panjang garis berat pada segitiga dan juga materi "aturan cosinus".

Menentukan Panjang Garis Berat pada Segitiga
       Garis berat sebuah segitiga adalah garis yang melalui sebuah titik sudut dan membagi sisi didepan sudut menjadi dua bagian sama panjang. Perhatikan gambar garis berat berikut,
Dalil-dalil yang berlaku pada garis berat yaitu :
1). Ketiga garis berat (garis AD, BE, dan CF) berpotongan pada satu titik yang disebut dengan titik berat (titik O).

2). Ketiga garis berat berpotongan pada titik berat dengan bagian-bagiannya memiliki perbandingan 2 : 1, bagian terpanjang adalah titik berat dengan titik sudut ke masing-masing. Perbandingan yang dimaksud adalah AO : OD = 2 : 1, BO : OE = 2 : 1, dan CO : OF = 2 : 1.

3). Panjang garis beratnya bisa kita hitung dengan rumus berikut.

Menentukan panjang garis beratnya.
perhatikan gambar gari berat AD berikut,
Misalkan panjang $ AD = d \, $,
menentukan panjang garis berat dengan rumus :
              $ d^2 = \frac{1}{2}b^2 + \frac{1}{2} - \frac{1}{4}a^2 $.
Contoh soal garis berat pada segitiga :
1). Diketahui segitiga ABC dengan panjang AB = 5 cm, BC = 7 cm , dan AC = 6 cm. Jika garis berat AD dan BE berpotongan di titik O, tentukan panjang AD dan BO!
Penyelesaian :
*). Gambar segitiga ABC dan garis berat AD serta BD.
*). Menentukan panjang garis berat AD.
$ \begin{align} AD^2 & = \frac{1}{2}. AB^2 + \frac{1}{2}.AC^2 - \frac{1}{4}.BC^2 \\ AD^2 & = \frac{1}{2}. 5^2 + \frac{1}{2}.6^2 - \frac{1}{4}.7^2 \\ AD^2 & = \frac{25}{2} + \frac{36}{2} - \frac{49}{4} \\ AD^2 & = \frac{50}{4} + \frac{72}{4} - \frac{49}{4} \\ AD^2 & = \frac{73}{4} \\ AD & = \sqrt{\frac{73}{4}} \\ AD & = \frac{1}{2}\sqrt{73} \end{align} $
Sehingga panjang garis berat $ AD = \frac{1}{2}\sqrt{73} \, $ cm.
*). Menentukan panjang garis berat BE.
$ \begin{align} BE^2 & = \frac{1}{2}. AB^2 + \frac{1}{2}.BC^2 - \frac{1}{4}.AC^2 \\ BE^2 & = \frac{1}{2}. 5^2 + \frac{1}{2}.7^2 - \frac{1}{4}.6^2 \\ BE^2 & = \frac{25}{2} + \frac{49}{2} - \frac{36}{4} \\ BE^2 & = \frac{50}{4} + \frac{98}{4} - \frac{36}{4} \\ BE^2 & = \frac{112}{4} = 28 = 4.7 \\ BE & = \sqrt{4.7} \\ BE & = 2\sqrt{7} \end{align} $
Sehingga panjang garis berat $ BE = 2\sqrt{7} \, $ cm.
*). Berdasarkan perbandingan titik berat, perbandingan BO : OE = 2 : 1,
Sehingga : $ BO = \frac{2}{3}BE = \frac{2}{3}. 2\sqrt{7} = \frac{4}{3}\sqrt{7} $.
Jadi, panjang $ BE = \frac{4}{3}\sqrt{7} \, $ cm.

2). Garis tinggi AD dan garis berat BE berpotongan di titik O pada segitiga ABC dengan panjang sisi-sisinya AB = 4 cm, BC = 6 cm, dan AC = 5 cm. Tentukan panjang OE!.
Penyelesaian :
*). Gambar ilustrasinya.
*). Menentukan panjang garis berat BE.
$ \begin{align} BE^2 & = \frac{1}{2}. AB^2 + \frac{1}{2}.BC^2 - \frac{1}{4}.AC^2 \\ BE^2 & = \frac{1}{2}. 4^2 + \frac{1}{2}.6^2 - \frac{1}{4}.5^2 \\ BE^2 & = \frac{16}{2} + \frac{36}{2} - \frac{25}{4} \\ BE^2 & = \frac{32}{4} + \frac{72}{4} - \frac{25}{4} \\ BE^2 & = \frac{79}{4} \\ BE & = \sqrt{\frac{79}{4}} \\ BE & = \frac{1}{2}\sqrt{79} \end{align} $
Sehingga panjang garis berat $ BE = \frac{1}{2}\sqrt{79} \, $ cm.
*). Menentukan panjang BD dengan dalil proyeksi pada garis tinggi AD.
$ \begin{align} AC^2 & = AB^2 + BC^2 - 2. BC.BD \\ 5^2 & = 4^2 + 6^2 - 2. 6.BD \\ 12BD & = 27 \\ BD & = \frac{27}{12} = \frac{9}{4} \end{align} $.
Panjang $ DC = BC - BD = 6 - \frac{9}{4} = \frac{15}{4} $
Sehingga perbandingan : $ \frac{BD}{DC} = \frac{\frac{9}{4}}{\frac{15}{4}} = \frac{9}{15} = \frac{3}{5} $.
*). Dalil Menelaus untuk EB dengan perbandingan EO : OB.
$ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}. \frac{CA}{EA} & = 1 \\ \frac{EO}{OB}. \frac{3}{5}. \frac{2}{1} & = 1 \\ \frac{EO}{OB}. \frac{6}{5} & = 1 \\ \frac{EO}{OB} & = \frac{5}{6} \end{align} $.
Dari perbandingan EO : OB = 5 : 6, maka
$ OE = \frac{5}{11} BE = \frac{5}{11} . \frac{1}{2}\sqrt{79} = \frac{5}{22} \sqrt{79} $ .
Jadi, panjang $ OE = \frac{5}{22} \sqrt{79} \, $ cm.

3). Terdapat segitiga ABC dengan garis berat AD = $ \sqrt{10}, \, BE = \sqrt{31}, \, $ CF dan panjang AB = 4 cm. Tentukan panjang sisi-sisi segitiga lainnya dan panjang garis berat CF!
Penyelesaian :
*). Ilustrasi gambar segitiga ABC.
*). Menyusun persamaan dari panjang garis berat.
Garis berat $ AD = \sqrt{10} $
$ \begin{align} AD^2 & = \frac{1}{2} AB^2 + \frac{1}{2}AC^2 - \frac{1}{4} BC^2 \\ (\sqrt{10})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \\ 10 & = 8 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \, \, \, \, \, \text{(kali 4)} \\ 40 & = 32 + 2b^2 - a^2 \\ -a^2 + 2b^2 & = 8 \, \, \, \, \, \text{....pers(i)} \end{align} $
Garis berat $ BE = \sqrt{31} $
$ \begin{align} BE^2 & = \frac{1}{2} AB^2 + \frac{1}{2}BC^2 - \frac{1}{4} AC^2 \\ (\sqrt{31})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \\ 31 & = 8 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \, \, \, \, \, \text{(kali 4)} \\ 124 & = 32 + 2a^2 - b^2 \\ 2a^2 - b^2 & = 92 \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). eliminasi pers(i) dan pers(ii) :
$ \begin{array}{c|c|cc} -a^2 + 2b^2 = 8 & \text{kali 2} & -2a^2 + 4b^2 = 16 & \\ 2a^2 - b^2 = 92 & \text{kali 2} & 2a^2 - b^2 = 92 & + \\ \hline & & 3b^2 = 108 & \\ & & b^2 = 36 & \\ & & b = 6 & \end{array} $
Pers(i) : $ -a^2 + 2b^2 = 8 \rightarrow -a^2 + 2. 6^2 = 8 \rightarrow a^2 = 64 \rightarrow a = 8 $.
Kita peroleh panjang sisi-sisi segitiganya : AB = 4 cm, BC = 8 cm, dan AC = 6 cm.
*). Menentukan panjang garis berat CF,
$ \begin{align} CF^2 & = \frac{1}{2} BC^2 + \frac{1}{2}AC^2 - \frac{1}{4} AB^2 \\ & = \frac{1}{2} .8^2 + \frac{1}{2}.6^2 - \frac{1}{4} .4^2 \\ & = 32 + 18 - 4 \\ CF^2 & = 46 \\ CF & = \sqrt{46} \end{align} $
Jadi, panjang garis berat $ CF = \sqrt{46} \, $ cm.

4). Segitiga ABC siku-siku di A. Garis berat AD tegak lurus garis berat BE berpotongan di titik O. Jika panjang $ AB = x , \, $ maka tentukan panjang BE!
Penyelesaian :
*). ilustrasi gambar segitiga ABC,
*). Menyusun persamaan dari tegak lurus.
Segitiga ABC siku-siku di A :
$ AB^2 + AC^2 = BC^2 \rightarrow x^2 + b^2 = a^2 \rightarrow b^2 - a^2 = -x^2 \, $ ....pers(i)
Segitiga AOB siku-siku di titik O :
BO : OE = 2 : 1, sehingga $ BO = \frac{2}{3}BE $.
AO : OD = 2 : 1, sehingga $ AO = \frac{2}{3}AD $.
$ AO^2 + OB^2 = AB^2 \rightarrow (\frac{2}{3}AD)^2 + (\frac{2}{3}BE)^2 = x^2 $
$ \frac{4}{9}AD^2 + \frac{4}{9}BE^2 = x^2 \rightarrow AD^2 + BE^2 = \frac{9}{4}x^2 \, $ ....pers(ii).
*). Menyusun persamaan dari garis berat.
Garis berat $ AD $
$ \begin{align} AD^2 & = \frac{1}{2} AB^2 + \frac{1}{2}AC^2 - \frac{1}{4} BC^2 \\ AD^2 & = \frac{1}{2} x^2 + \frac{1}{2}b^2 - \frac{1}{4} a^2 \, \, \, \, \, \text{....pers(iii)} \end{align} $
Garis berat $ BE = \sqrt{31} $
$ \begin{align} BE^2 & = \frac{1}{2} AB^2 + \frac{1}{2}BC^2 - \frac{1}{4} AC^2 \\ BE^2 & = \frac{1}{2} x^2 + \frac{1}{2}a^2 - \frac{1}{4} b^2 \, \, \, \, \, \text{....pers(iv)} \end{align} $
*). Eliminasi pers(iii) dan pes(iv) dan gunakan pers(ii)
$ \begin{array}{cc} AD^2 = \frac{1}{2} x^2 + \frac{1}{2}b^2 - \frac{1}{4} a^2 & \\ BE^2 = \frac{1}{2} x^2 + \frac{1}{2}a^2 - \frac{1}{4} b^2 & - \\ \hline AD^2 - BE^2 = \frac{1}{2}(b^2-a^2) + \frac{1}{4}(b^2 - a^2) & \\ AD^2 - BE^2 = \frac{3}{4}(b^2-a^2) & \\ AD^2 - BE^2 = \frac{3}{4}(-x^2) & \\ AD^2 - BE^2 = -\frac{3}{4}x^2 & \end{array} $
Kita peroleh : $ AD^2 - BE^2 = -\frac{3}{4}x^2 \, $ ....pers(v).
*). Eliminasi pers(ii) dan pers(v) :
$\begin{array}{cc} AD^2 + BE^2 = \frac{9}{4}x^2 & \\ AD^2 - BE^2 = -\frac{3}{4}x^2 & - \\ \hline 2BE^2 = 3x^2 & \\ BE^2 = \frac{3}{2} x^2 & \end{array} $
Dari bentuk $ BE^2 = \frac{3}{2} x^2 $, kita peroleh :
$ BE^2 = \frac{3}{2} x^2 \rightarrow BE^2 = \frac{6}{4} x^2 \rightarrow BE = \sqrt{\frac{6}{4} x^2 } = \frac{1}{2}x\sqrt{6} $.
Jadi, kita peroleh panjang $ BE = \frac{1}{2}x\sqrt{6} $.

Pembuktian perbandingan pada dalil 2 garis berat.
Dalil 2 garis berat berbunyi :
       Ketiga garis berat berpotongan pada titik berat dengan bagian-bagiannya memiliki perbandingan 2 : 1, bagian terpanjang adalah titik berat dengan titik sudut ke masing-masing. Perbandingan yang dimaksud adalah AO : OD = 2 : 1, BO : OE = 2 : 1, dan CO : OF = 2 : 1.

Untuk membuktikan dalil ini, kita menggunakan dalil Menenlaus,
Perhatikan gambar berikut.
*). Dalil Menelaus untuk gambar (a).
Perbandingan AO : OD dengan $ \frac{AF}{FB} = 1 \, $ dan $ \frac{BC}{CD} = \frac{2}{1} $
$ \begin{align} \frac{DO}{OA}. \frac{AF}{FB}.\frac{BC}{DC} & = 1 \\ \frac{DO}{OA}. 1.\frac{2}{1} & = 1 \\ \frac{DO}{OA} & = \frac{1}{2} \\ \frac{AO}{OD} & = \frac{2}{1} \end{align} $
Perbandingan CO : OF dengan $ \frac{CD}{DB} = 1 \, $ dan $ \frac{BA}{FA} = \frac{2}{1} $
$ \begin{align} \frac{FO}{OC}. \frac{CD}{DB}.\frac{BA}{FA} & = 1 \\ \frac{FO}{OC}. 1.\frac{2}{1} & = 1 \\ \frac{FO}{OC} & = \frac{1}{2} \\ \frac{CO}{OF} & = \frac{2}{1} \end{align} $
*). Dalil Menelaus untuk gambar (b).
Perbandingan BO : OE dengan $ \frac{BD}{DC} = 1 \, $ dan $ \frac{CA}{EA} = \frac{2}{1} $
$ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}.\frac{CA}{EA} & = 1 \\ \frac{EO}{OB}. 1.\frac{2}{1} & = 1 \\ \frac{EO}{OB} & = \frac{1}{2} \\ \frac{BO}{OE} & = \frac{2}{1} \end{align} $
Jadi, terbukti AO : OD = 2 : 1, BO : OE = 2 : 1, dan CO : OF = 2 : 1.
Pembuktian Panjang Garis Berat dengan Aturan Cosinus
       Untuk materi aturan cosinus, silahkan baca langsung materinya pada artikel "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga".
Perhatikan segitiga ABC berikut.
Panjang $ BD = DC = m = \frac{1}{2}a \, $ dan panjang $ AD = d $.
*). Misalkan sudut $ ABD = y \, $ dan sudut $ ADC = x $.
Sudut $ x \, $ dan $ y \, $ saling berpelurus, sehingga jumlahnya $ 180^\circ$.
$ y + x = 180^\circ \rightarrow y = 180^\circ - x $.
Sehingga : $ \cos y = \cos (180^\circ - x ) = - \cos x $.
*). Aturan Cosinus pada segitiga ABD,
$ c^2 = d^2 + m^2 - 2.d.m .\cos y \rightarrow c^2 = d^2 + m^2 - 2.d.m .(-\cos x) $
$ \rightarrow c^2 = d^2 + m^2 + 2dm\cos x \, $ ....pers(i).
*). Aturan Cosinus pada segitiga ACD,
$ b^2 = d^2 + m^2 - 2.d.m .\cos x \, $ ....pers(ii).
*). Eliminasi pers(i) dan pers(ii) :
$ \begin{array}{cc} c^2 = d^2 + m^2 + 2dm\cos x & \\ b^2 = d^2 + m^2 - 2.d.m .\cos x & + \\ \hline b^2 + c^2 = 2d^2 + 2m^2 & \\ d^2 = \frac{1}{2}b^2 + \frac{1}{2}c^2 - m^2 & \\ \end{array} $
Substitusi nilai $ m = \frac{1}{2}a $.
$ \begin{align} d^2 & = \frac{1}{2}b^2 + \frac{1}{2}c^2 - m^2 \\ d^2 & = \frac{1}{2}b^2 + \frac{1}{2}c^2 - (\frac{1}{2}a)^2 \\ d^2 & = \frac{1}{2}b^2 + \frac{1}{2}c^2 - \frac{1}{4}a^2 \end{align} $
Jadi, terbukti panjang garis berat $ \, AD = d \, $ adalah
$ d^2 = \frac{1}{2}b^2 + \frac{1}{2}c^2 - \frac{1}{4}a^2 $ .
Pembuktian Panjang Garis Berat dengan Dalil Stewart
Perhatikan segitiga ABC berikut.
Panjang $ BD = DC = m = \frac{1}{2}a \, $ dan panjang $ AD = d $.
*). Dalil Stewart pada segitiga ABC dan substitusi $ m = \frac{1}{2}a $.
$ \begin{align} d^2 . a & = m.b^2 + m.c^2 - m.m.a \\ d^2 . a & = \frac{1}{2}a.b^2 + \frac{1}{2}a.c^2 - \frac{1}{2}a.\frac{1}{2}a.a \, \, \, \, \text{....(bagi } a ) \\ d^2 & = \frac{1}{2} b^2 + \frac{1}{2} c^2 - \frac{1}{4} a^2 \end{align} $
Jadi, terbukti panjang garis berat $ \, AD = d \, $ adalah
$ d^2 = \frac{1}{2}b^2 + \frac{1}{2}c^2 - \frac{1}{4}a^2 $ .

Dalil Stewart pada Segitiga dan Pembuktiannya

         Blog Koma - Salah satu dalil garis pada segitiga yang tidak kalah penting adalah dalil Stewart. Pada artikel ini kita membahas materi dalil Stewart pada segitiga dan pembuktiannya. Salah satu kegunaan dalil Stewart adalah untuk membuktikan rumus panjang garis berat dan panjang garis bagi sebuah segitiga. Dan untuk mudah dalam membuktikan, silahkan baca tentang dalil proyeksi pada materi "Panjang Garis Tinggi pada Segitiga dan Pembuktiannya".

Konsep Dalil Stewart pada Segitiga
       Dalil Stewart menyatakan hubungan antara sisi-sisi segitiga dengan panjang ruas garis yang menghubungkan titik sudut dengan sisi yang ada dihadapan sudut tersebut. perhatikan gambar segitiga ABC berikut,
Jika titik D terletak pada sisi BC pada sigitiga ABC, sehingga panjang $ BD = m , \, DC = n , \, $ dan $ m + n = a , \, $ maka panjang sebarang garis $ AD = d \, $ yaitu :

$ AD^2 . BC = AC^2.BD + AB^2 . DC - BD.DC.BC \, $
atau $ \, d^2 . a = b^2.m + c^2 . n - m.n.a $
Contoh soal Dalil Stewart pada segitiga :
1). Diketahui segitiga ABC dengan panjang sisi-sisinya AB = 4 cm, BC = 8 cm, dan AC = 6 cm. Titik D terletak pada sisi BC dengan BD = 2 cm dan titik E terletak pada sisi AC dengan panjang AE = 4 cm. Tentukan panjang DE?
Penyelesaian :
*). Kita gunakan dalil Stewart.
*). Menentukan panjang AD dengan dalil Stewart pada $\Delta$ABC
$ \begin{align} AD^2 . BC & = BD. AC^2 + DC.AB^2 - BD.DC.BC \\ AD^2 . 8 & = 2. 6^2 + 6.4^2 - 2.6.8 \\ AD^2 . 8 & = 72 + 96 - 96 \\ AD^2 . 8 & = 72 \\ AD^2 & = 9 \\ AD & = \sqrt{9} = 3 \end{align} $
Sehingga panjang AD = 3 cm.
*). Menentukan panjang DE dengan dalil Stewart pada $\Delta$ADC
$ \begin{align} DE^2 . AC & = CE.AD^2 + EA.DC^2 - CE.EA.AC \\ DE^2 . 6 & = 2.3^2 + 4.6^2 - 2.4.6 \\ DE^2 . 6 & = 18 + 144 - 48 \\ DE^2 . 6 & = 18 + 96 \\ DE^2 . 6 & = 114 \\ DE^2 & = 19 \\ DE & = \sqrt{19} \end{align} $
Jadi, panjang DE = $\sqrt{19} $ cm.

2). Pada sebuah segitiga ABC, diketahui AB = 8 cm, BC = 7 cm, dan AC = 6 cm. Pada perpanjangan AB terdapat titik D, sehingga BD = 1/2 AD. Hitunglah panjang CD.
Penyelesaian :
*). Karena panjang BD = 1/2 AD, maka BD = AB = 8 cm.
*). Gambar ilustrasinya :
*). Kita terapkan dalil stewart pada segitiga ACD.
$ \begin{align} CB^2.AD & = AB.CD^2 + BD.AC^2 - AB.BD.AD \\ 7^2.16 & = 8.CD^2 + 8.6^2 - 8.8.16 \, \, \, \, \, \text{(bagi 8)} \\ 49.2 & = CD^2 + 36 - 8.16 \\ 98 & = CD^2 + 36 - 128 \\ 98 & = CD^2 -92 \\ CD^2 & = 190 \\ CD & = \sqrt{190} \end{align} $
Jadi, panjang $ CD = \sqrt{190} \, $ cm.
Catatan : soal nomor 2 ini bisa diselesaikan menggunakan rumus panjang garis berat.

3). Diketahui sebuah segitiga ABC dengan AC = 8 cm, AB = 6 cm dan BC = 12 cm. Titik D pada AB dan titik E pada AC sehingga AD:AB = 1:3 dan BE = CE. Hitunglah panjang DE!
Penyelesaian :
*). Panjang AD:AB = 1:3 ,
Panjang $ AD = \frac{1}{3} AB = \frac{1}{3} . 6 = 2 $.
Panjang $ DB = \frac{2}{3} AB = \frac{2}{3} . 6 = 4 $.
Misalkan panjang $ BE = EC = x , \, $ sehingga $ EA = 8 - x $.
*). Ilustrasi gambar segitiga ABC.
*). Dalil Stewart pada $\Delta$ABC menentukan panjang BE ($x$),
$ \begin{align} BE^2.AC & = CE.AB^2 + EA.BC^2 - CE.EA.AC \\ x^2.8 & = x.6^2 + (8-x).12^2 - x.(8-x).8 \\ 8x^2 & = 36x + 1152 - 144x - 64x + 8x^2 \\ 172x & = 1152 \\ x & = \frac{1152}{172} = \frac{288}{43} \end{align} $
Sehingga panjang $ BE = x = \frac{288}{43} \, $ cm.
Panjang $ EA = 8 - x = 8 - \frac{288}{43} = \frac{56}{43} $ .
*). Kita terapkan dalil stewart pada segitiga AEB.
$ \begin{align} DE^2.AB & = AD.BE^2 + DB.EA^2 - AD.DB.AB \\ DE^2.6 & = 2.(\frac{288}{43})^2 + 4.(\frac{56}{43})^2 - 2.4.6 \\ DE^2.6 & = 2.(\frac{82944}{1849}) + 4.(\frac{3136}{1849}) - 48 \\ DE^2.6 & = \frac{165888}{1849} + \frac{12544}{1849} - 48 \\ DE^2.6 & = \frac{178432}{1849} - 48 \\ DE^2.6 & = \frac{178432}{1849} - \frac{88752}{1849} \\ DE^2.6 & = \frac{89680}{1849} \\ DE^2 & = \frac{89680}{11094} \\ DE & = \sqrt{\frac{89680}{11094}} \\ DE & = \sqrt{\frac{89680}{11094}} \end{align} $
Jadi, panjang $ DE = \sqrt{\frac{89680}{11094}} \, $ cm.

4). Diketahui ada sebuah trapesium. Sisi-sisi sejajar trapesium adalah 16 cm dan 10 cm. Panjang kaki-kakinya 8 cm dan 10 cm. Hitunglah panjang kedua diagonalnya!
Penyelesaian :
*). ilustrasi gambar trapesiumnya.
*). Misalkan panjang $ AC = x \, $ dan $ BD = y $ .
Misalkan juga $ AE = x_1 , \, EC = x_2, \, DE = y_1, \, EB = y_2 $
dengan $ x_1 + x_2 = x \, $ dan $ \, y_1 + y_2 = y $.
*). Segitiga AED sebangun dengan segitiga BEC.
Karena sebangun, maka perbandingan sisi yang bersesuaian sama.
$ \frac{AE}{EC} = \frac{AD}{BC} \rightarrow \frac{x_1}{x_2} = \frac{10}{16} \rightarrow \frac{x_1}{x_2} = \frac{5}{8} $.
Sehingga : $ x_1 = \frac{5}{13} x \, $ dan $ x_2 = \frac{8}{13}x $.
$ \frac{DE}{EB} = \frac{AD}{BC} \rightarrow \frac{y_1}{y_2} = \frac{10}{16} \rightarrow \frac{y_1}{y_2} = \frac{5}{8} $.
Sehingga : $ y_1 = \frac{5}{13} y \, $ dan $ y_2 = \frac{8}{13}y $.
*). Menerapkan dalil stewart pada segitiga ACD.
$ \begin{align} DE^2.AC & = AE.CD^2 + EC.AD^2 - AE.EC.AC \\ y_1^2.x & = x_1.8^2 + x_2.10^2 - x_1.x_2.x \, \, \, \, \, \text{....pers(i)} \end{align} $
*). Menerapkan dalil stewart pada segitiga ACB.
$ \begin{align} BE^2.AC & = AE.BC^2 + EC.AB^2 - AE.EC.AC \\ y_2^2.x & = x_1.(16)^2 + x_2.10^2 - x_1.x_2.x \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). Eliminasi pers(i) dan pers(ii),
$ \begin{array}{cc} y_1^2.x = x_1.8^2 + x_2.10^2 - x_1.x_2.x & \\ y_2^2.x = x_1.(16)^2 + x_2.10^2 - x_1.x_2.x & - \\ \hline x(y_1^2 - y_2^2) = -192x_1 & \end{array} $
*). Substitusi nilai $ x_1, y_1 , y_2 $,
$ \begin{align} x(y_1^2 - y_2^2) & = -192x_1 \\ x((\frac{5}{13} y)^2 - (\frac{8}{13} y)^2) & = -192.\frac{5}{13} x \\ x(\frac{25}{169} y^2 - \frac{64}{169} y^2) & = -192.\frac{5}{13} x \\ x.\frac{-39}{169} y^2 & = -192.\frac{5}{13} x \\ \frac{39}{169} y^2 & = 192.\frac{5}{13} \\ \frac{3}{13} y^2 & = 192.\frac{5}{13} \\ 3 y^2 & = 192 . 5 \\ y^2 & = \frac{192.5}{3} = 64 . 5 \\ y & = \sqrt{64. 5} = 8 \sqrt{5} \end{align} $
*). Menerapkan dalil stewart pada segitiga ADB.
$ \begin{align} AE^2.BD & = DE.AB^2 + EB.AD^2 - DE.EB.DB \\ x_1^2.y & = y_1.10^2 + y_2.10^2 - y_1.y_2.y \, \, \, \, \, \text{....pers(iii)} \end{align} $
*). Menerapkan dalil stewart pada segitiga CDB.
$ \begin{align} CE^2.BD & = DE.BC^2 + EB.CD^2 - DE.EB.DB \\ x_2^2.y & = y_1.16^2 + y_2.8^2 - y_1.y_2.y \, \, \, \, \, \text{....pers(iv)} \end{align} $
*). Eliminasi pers(iii) dan pers(iv),
$ \begin{array}{cc} x_1^2.y = y_1.10^2 + y_2.10^2 - y_1.y_2.y & \\ x_2^2.y = y_1.16^2 + y_2.8^2 - y_1.y_2.y & - \\ \hline y(x_1^2 - x_2^2) = -156y_1 + 36y_2 & \end{array} $
*). Substitusi nilai $ x_1,x_2, y_1 , y_2 $,
$ \begin{align} y(x_1^2 - x_2^2) & = -156y_1 + 36y_2 \\ y((\frac{5}{13} x)^2 - (\frac{8}{13} x)^2) & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ y(\frac{25}{169} x^2 - \frac{64}{169} x^2) & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ y.\frac{-39}{169} x^2 & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ \frac{-3}{13} x^2 & = -156.\frac{5}{13} + 36. \frac{8}{13} \\ -3 x^2 & = -156.5 + 36. 8 \\ -3 x^2 & = -492 \\ x^2 & = 164 \\ x & = \sqrt{164} \end{align} $
Jadi, panjang diagonal-diagonalnya adalah $ 8 \sqrt{5} \, $ cm dan $ \sqrt{164} \, $ cm.

5). Sisi-sisi sejajar sebuah trapesium 6 cm dan 36 cm. Panjang diagonalnya 21 cm dan 28 cm. Hitunglah panjang kaki-kaki trapesium tersebut!
Penyelesaian :
*). Perhatikan ilustrasi gambar di bawah ini.
*). Menentukan panjang masing pada trapesium.
Diagonal AC = 28 cm, diagonal BD = 21 cm.
Sisi-sisi sejajar : AD = 6 cm dan BC = 36 cm.
*). Segitiga AED sebangun dengan segitiga BEC.
$ \frac{AE}{EC} = \frac{AD}{BC} \rightarrow \frac{AE}{EC} = \frac{6}{36} \rightarrow \frac{AE}{EC} = \frac{1}{6} $
Sehingga : $ AE = \frac{1}{7} AC = \frac{1}{7}. 28 = 4 \, $ dan $ EC = \frac{6}{7} AC = \frac{6}{7}. 28 = 24 $ .
$ \frac{DE}{EB} = \frac{AD}{BC} \rightarrow \frac{DE}{EB} = \frac{6}{36} \rightarrow \frac{DE}{EB} = \frac{1}{6} $
Sehingga : $ DE = \frac{1}{7} BD = \frac{1}{7}. 21 = 3 \, $ dan $ EB = \frac{6}{7} BD = \frac{6}{7}. 21 = 18 $ .
*). Menerapkan dalil stewart pada segitiga ACD.
$ \begin{align} DE^2.AC & = AE.CD^2 + EC.AD^2 - AE.EC.AC \\ 3^2.28 & = 4.CD^2 + 24.6^2 - 4.24.28 \\ 252 & = 4.CD^2 + 864 - 2688 \\ 252 & = 4.CD^2 - 1824 \\ 4.CD^2 & = 2076 \\ CD^2 & = \frac{2076}{4} = 519 \\ CD & = \sqrt{519} \end{align} $
*). Menerapkan dalil stewart pada segitiga ACB.
$ \begin{align} BE^2.AC & = AE.BC^2 + EC.AB^2 - AE.EC.AC \\ 18^2.28 & = 4.(36)^2 + 24.AB^2 - 4.24.28 \\ 9072 & = 5184 + 24.AB^2 - 2688 \\ 24.AB^2 & = 6576 \\ AB^2 & = 274 \\ AB & = \sqrt{274} \end{align} $
Jadi, panjang kaki-kaki trapesium tersebut adalah $ \sqrt{519} \, $ cm dan $ \sqrt{274} \, $ cm.

Pembuktian Dalil Stewart dengan aturan Cosinus
       Untuk pembuktian pertama ini kita akan menggunakan aturan cosinus. Teori aturan cosinus bisa di baca pada artikel "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga".
*). Panjang untuk sisi masing-masing terlihat pada gambar di atas.
khususnya adalah $ m + n = a $.
*). Misalkan sudut $ ABD = y \, $ dan sudut $ ADC = x $.
Sudut $ x \, $ dan $ y \, $ saling berpelurus, sehingga jumlahnya $ 180^\circ$.
$ y + x = 180^\circ \rightarrow y = 180^\circ - x $.
Sehingga : $ \cos y = \cos (180^\circ - x ) = - \cos x $.
*). Aturan Cosinus pada segitiga ABD,
$ c^2 = d^2 + m^2 - 2.d.m .\cos y $
$ \rightarrow c^2 = d^2 + m^2 - 2.d.m .(-\cos x) $
$ \rightarrow c^2 = d^2 + m^2 + 2dm\cos x \, $ , kalian dengan $ n \, $ kedua ruas :
$ c^2.n = d^2.n + m^2.n + 2dmn\cos x \, $ ....pers(i).
*). Aturan Cosinus pada segitiga ACD,
$ b^2 = d^2 + n^2 - 2.d.n .\cos x \, $ , kalian dengan $ m \, $ kedua ruas :
$ b^2.m = d^2.m + n^2.m - 2dmn\cos x \, $ ....pers(ii).
*). Eliminasi pers(i) dan pers(ii) :
$ \begin{array}{cc} b^2.m = d^2.m + n^2.m - 2dmn\cos x & \\ c^2.n = d^2.n + m^2.n + 2dmn\cos x & + \\ \hline b^2.m + c^2.n = d^2(m+n) + mn(m+n) & \\ b^2.m + c^2.n = d^2.a + m.n.a & \\ d^2.a = b^2.m + c^2.n - m.n.a & \end{array} $
Sehingga terbukti panjang $ AD = d \, $ diperoleh dari rumus :
$ d^2.a = b^2.m + c^2.n - m.n.a \, $ atau
$ AD^2 . BC = AC^2.BD + AB^2 . DC - BD.DC.BC $
Pembuktian Dalil Stewart dengan dalil proyeksi
       Teori dalil proyeksi bisa kita baca pada materi "Panjang Garis Tinggi pada Segitiga dan Pembuktiannya" yang dibagi menjadi dua yaitu dalil proyeksi segitiga tumpul dan dalil proyeksi segitiga lancip.
Pada gambar kita proyeksikan garis AD pada garis BD yang hasilnya adalah DE.
*). Panjang untuk sisi masing-masing terlihat pada gambar di atas.
khususnya adalah $ m + n = a $.
*). Dalil proyeksi lancip pada segitiga BAD,
$ c^2 = d^2 + m^2 - 2 . m . ED \, $ , kalian dengan $ n \, $ kedua ruas :
$ c^2.n = d^2.n + m^2.n - 2 . m .n. ED \, $ ....pers(iii).
*). Dalil proyeksi tumpul pada segitiga CAD,
$ b^2 = d^2 + n^2 + 2.n .ED \, $ , kalian dengan $ m \, $ kedua ruas :
$ b^2.m = d^2.m + n^2.m + 2 . m .n. ED \, $ ....pers(iv).
*). Eliminasi pers(iii) dan pers(iv) :
$ \begin{array}{cc} b^2.m = d^2.m + n^2.m + 2 . m .n. ED & \\ c^2.n = d^2.n + m^2.n - 2 . m .n. ED & + \\ \hline b^2.m + c^2.n = d^2(m+n) + mn(m+n) & \\ b^2.m + c^2.n = d^2.a + m.n.a & \\ d^2.a = b^2.m + c^2.n - m.n.a & \end{array} $
Sehingga terbukti panjang $ AD = d \, $ diperoleh dari rumus :
$ d^2.a = b^2.m + c^2.n - m.n.a \, $ atau
$ AD^2 . BC = AC^2.BD + AB^2 . DC - BD.DC.BC $

Catatan:
Seetelah saya mulai menyusun materi yang berkaitan dengan Dalil Stewart, ternyata saya sangat kagum dengan kegunaan dalil ini, tidak hanya untuk membuktikan panjang garis berat dan garis bagi, ternyata bisa juga digunakan untuk membuktikan teorema pythagoras pada segitiga siku-siku.
Ini sedikit tantangan untuk kita semua, coba selesaikan beberapa soal berikut ini,
i). Coba buktikan teorema pythagaoras menggunakan dali Stewart, silahkan konstruksinya bebas.
ii). Buktikan untuk sebarang jajar genjang, berlaku bahwa jumlah kuadrat sisi-sisi diagonalnya sama dengan dua kali jumlah kuadrat sisi-sisinya sejajarnya.
Selamat untuk mencoba bagi teman-teman yang tertarik untuk memecahkan masalah di atas.

Minggu, 03 Januari 2016

Panjang Garis Tinggi pada Segitiga dan Pembuktiannya

         Blog Koma - Sebelumnya telah dibahas mengenai "panjang garis-garis istimewa pada segitiga" yang tanpa disertai dengan contoh soal ataupun pembuktiaanya. Pada artikel Panjang Garis Tinggi pada Segitiga dan Pembuktiannya ini kita akan lebih menekankan lagi contoh-contoh soalnya dan tentu pembuktian rumus-rumus yang digunakan.

Menentukan Panjang Garis Tinggi pada Segitiga
       Garis tinggi sebuah segitiga adalah garis yang melalui sebuah titik sudut segitiga dan tegak lurus pada sisi yang berhadapan dengan titik sudut tersebut. perhatikan gambar garis tinggi berikut,

Dalil-dalil yang berlaku pada garis tinggi segitiga yaitu :
1). Ketiga garis tinggi berpotongan pada satu titik (titik O) yang disebut dengan titik tinggi.

2). Pada segitiga siku-siku, garis tinggi ke hipotenusanya (sisi terpanjang) membagi segitiga siku-siku menjadi dua segitiga yang sebangun dan juga sebangun dengan segitiga awalnya (ketiga segitiga yang ada sebangun) seperti gambar berikut ini,
$\Delta$ABC sebangun dengan $\Delta$ABD sebangun dengan $\Delta$CBD.

3). Menentukan panjang garis tinggi pada segitiga :
       Untuk menentukan panjang garis tinggi, kita gunakan Dalil Proyeksi. Ada dua jenis yaitu :
*). Dali proyeksi segitiga lancip,
Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut.
Misalkan panjang $ CD = p \, $ ,
panjang $ p $ bisa ditentukan dengan rumus: $ \, c^2 = a^2 + b^2 - 2ap $

Misalkan panjang $ BD = k \, $ ,
panjang $ k $ bisa ditentukan dengan rumus: $ \, b^2 = a^2 + c^2 - 2ap $

*). Dali proyeksi segitiga tumpul,
Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut.

Misalkan panjang $ BD = p \, $ ,
panjang $ p $ bisa ditentukan dengan rumus: $ \, c^2 = a^2 + b^2 + 2ap $

Catatan :
i). Setelah ketemu pajang $ p \, $ , bari kita akan menentukan tinggi segitiganya dengan pythagoras. Artinya kita tidak bisa langsung dapat menentukan tinggi segitiganya, tapi bertahap.
ii). Ada cara lain sehingga tinggi segitiga bisa langsung kita temukan tanpa menjari $ p \, $ terlebih dahulu yaitu menggunakan konsep luas segitiga.
Menentukan Panjang Garis Tinggi dengan Luas Segitiga
*). Luas segitiga Menggunakan rumus Heron.
Misalkan diketahui sisi-sisi segitiga yaitu $a, \, b, \, $ dan $ \, c $.
$ s = \frac{1}{2}(a+b+c) $
$ \text{Luas } \Delta = \sqrt{s(s-a)(s-b)(s-c)} $.
Untuk pembuktian rumus Heron ini, silahkan baca pada "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga".

*). Menentukan panjang garis tinggi,
Perhatikan gambar berikut,
Garis tingginya adalah garis AF, BD, dan CE.
$ \begin{align} AF = t_a & = \frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)} \\ BD = t_b & = \frac{2}{b} \sqrt{s(s-a)(s-b)(s-c)} \\ CE = t_c & = \frac{2}{c} \sqrt{s(s-a)(s-b)(s-c)} \end{align} $
Contoh soal garis tinggi pada segitiga :
1). Sebuah segitiga ABC dengan AB = 5 cm, BC = 6 cm, dan AC = 7 cm. AD adalah garis tinggi segitga ABC, tentukan panjang AD dan luas segitiga ABC.
Penyelesaian :
Cara I : Menggunakan dalil Proyeksi,
*). Menentukan nilai $ p $,
$ \begin{align} c^2 & = a^2 + b^2 - 2ap \\ 5^2 & = 6^2 + 7^2 - 2.6.p \\ 25 & = 36 + 49 - 12p \\ 25 & = 36 + 49 - 12p \\ 12p & = 60 \\ p & = 5 \end{align} $
*). Menentukan panjang AD dengan pythagoras segitiga ADC
$ \begin{align} AC^2 & = AD^2 + DC^2 \\ 7^2 & = AD^2 + 5^2 \\ 49 & = AD^2 + 25 \\ AD^2 & = 24 \\ AD & = \sqrt{24} = 2\sqrt{6} \end{align} $
Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm.
*). Menentukan Luas segitiga ABC.
Luas ABC $ = \frac{1}{2}. a . t = \frac{1}{2}.6 . 2 \sqrt{6} = 6 \sqrt{6} $.
Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$.

Cara II : Menggunakan luas segitiga,
*). Diketahui : $ a = 6, b = 7 , c = 5 $.
$ s = \frac{1}{2}(a+b+c) = \frac{1}{2}(6 + 7 + 5) = \frac{1}{2}.(18) = 9 $.
*). Menentukan panjang AD dengan luas segitiga
$ \begin{align} AD = t_a & = \frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)} \\ & = \frac{2}{6} \sqrt{9(9-6)(9-7)(9-5)} \\ & = \frac{1}{3} \sqrt{9.3.2.4} \\ & = \frac{1}{3} 3.2.\sqrt{6} \\ & = 2\sqrt{6} \end{align} $
Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm.
*). Luas segitiga menggunakan rumus Heron :
$ \begin{align} \text{Luas ABC } & = \sqrt{s(s-a)(s-b)(s-c)} \\ & = \sqrt{9(9-6)(9-7)(9-5)} \\ & = \sqrt{9.3.2.4} \\ & = 3.2.\sqrt{6} \\ & = 6 \sqrt{6} \end{align} $
Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$.

Bagaimana dengan kedua cara di atas, lebih mudah mana, cara I atau cara II. Cara II (rumus Heron) akan mudah kalau panjang semua sisi segitiganya berupa bilangan bulat, dan akan sulit jika salah satu panjang sisi segitiganya dalam bentuk akar. Ini artinya mudah atau tidaknya bersifat relatif.

2). Diketahui persegi panjang ABCD dengan AB = 8 cm dan BC = 6 cm. Titik M dan N terletak pada AC sedemikian sehingga DM dan BN tegak lurus pada AC. Tentukan panjang MN?
Penyelesaian :
*). Gambar persegi panjangnya.
Segitiga ADC siku-siku di D sehingga dengan pythagoras kita peroleh AC = 10 cm.
Garis DM adalah garis tinggi pada segitiga ADC sehingga bisa kita terapkan dalil proyeksi.
*). Menentukan panjang AM pada gambar (b)
$ \begin{align} CD^2 & = AD^2 + AC^2 - 2.AC . AM \\ 8^2 & = 6^2 + 10^2 - 2. 10 . AM \\ 64 & = 36 + 100 - 20. AM \\ AM & = 3,6 \end{align} $
Karena panjang AM = CN, sehingga CN = 3,6 juga.
*). Menentukan panjang MN :
$ \begin{align} MN & = AC - (AM + CN) \\ & = 10 - (3,6 + 3,6) \\ & = 10 - 7,2 \\ & = 2,8 \end{align} $
Jadi, panjang AM = 2,8 cm.

3). Perhatikan gambar segitiga ABC berikut ini,
Diketahui panjang BC = 12 cm, AD = 30 cm , AC = 15 cm. Tentukan panjang garis tinggi BE.
Penyelesaian :
*). Kita gunakan luas segitiga : Luas $ = \frac{1}{2}.a.t$.
$ \begin{align} \text{Luas segitiga ABC dengan alas AC} & = \text{Luas segitiga ABC dengan alas BC} \\ \frac{1}{2}. AC . BE & = \frac{1}{2}.BC . AD \\ AC . BE & = BC . AD \\ 15 . BE & = 12 \times 30 \\ BE & = \frac{12 \times 30}{15} \\ BE & = 24 \end{align} $
Jadi, panjang garis tinggi BE = 24 cm.

4). Sebuah segitiga ABC dengan AB = 5 cm, BC = 7 cm, dan AC = 6 cm. Garis tinggi AD dan BE berpotongan di titik O. Tentukan perbandingan panjang AO:OD dan perbandingan BO : OE.
Penyelesaian :
*). Untuk menjawab soal ini, kita menggunakan garis tinggi (dalil proyeksi) dan dalil Menelaus.
*). Dalil proyeksi untuk garis tinggi AD dan BE.
garis tinggi AD :
$ \begin{align} AC^2 & = AB^2 + BC^2 - 2 . BC . BD \\ 6^2 & = 5^2 + 7^2 - 2 . 7 . BD \\ 36 & = 25 + 49 - 14. BD \\ 36 & = 25 + 49 - 14. BD \\ 14BD & = 38 \\ BD & = \frac{38}{14} = \frac{19}{7} \end{align} $
Sehingga panjang $ DC = 7 - BD = 7 - \frac{19}{7} = \frac{30}{7} $.
garis tinggi BE :
$ \begin{align} BC^2 & = AB^2 + AC^2 - 2 . AC . AE \\ 7^2 & = 5^2 + 6^2 - 2 . 6 . AE \\ 49 & = 25 + 36 - 12. AE \\ AE & = 1 \end{align} $
Sehingga panjang $ CE = 6 - AE = 6 - 1 = 5 $.
*). Dalil Menelaus untuk perbandingan garis,
Perbandingan AO : OD,
$ \begin{align} \frac{DO}{AO}. \frac{AE}{EC}. \frac{CB}{DB} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{7}{\frac{19}{7}} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{49}{19} & = 1 \\ \frac{DO}{AO}. \frac{49}{95} & = 1 \\ \frac{DO}{AO} & = \frac{95}{49} \end{align} $
Sehingga perbandingan AO : DO = 49 : 95.
Perbandingan BO : OE,
$ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}. \frac{CA}{AE} & = 1 \\ \frac{EO}{OB}. \frac{\frac{19}{7}}{\frac{30}{7}}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{30}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{5} & = 1 \\ \frac{EO}{OB} & = \frac{5}{19} \end{align} $
Sehingga perbandingan BO : OE = 19 : 5.

Pembuktian dalil Proyeksi
       Untuk membuktikan dalil proyeksi, kita cukup menggunakan teorema pythagoras. Perhatikan gambar berikut,
*). Dalil proyeksi segitiga lancip.
Misalkan panjang $ CD = p , \, $ maka panjang $ BD = a - p $.
*). Pada $\Delta$BAD dan $\Delta$CAD masing-masing siku-siku di D sehingga bisa diterapkan pythagoras:
Segitiga CAD : $ AD^2 = b^2 - p^2 \, $ ....pers(i).
Segitiga BAD : $ AD^2 = c^2 - (a-p)^2 \, $ ....pers(ii).
Dari pers(i) dan pers(ii), panjang AD sama, sehingga :
$ \begin{align} c^2 - (a-p)^2 & = b^2 - p^2 \\ c^2 - (a^2 - 2ap + p^2) & = b^2 - p^2 \\ c^2 - a^2 + 2ap - p^2 & = b^2 - p^2 \\ c^2 & = a^2 + b^2 - 2ap \end{align} $
Jadi terbukti persamaan : $ c^2 = a^2 + b^2 - 2ap $.

*). Dalil proyeksi segitiga tumpul.
Misalkan panjang $ BD = p , \, $ maka panjang $ CD = a + p $.
*). Pada $\Delta$ADB dan $\Delta$ADC masing-masing siku-siku di D sehingga bisa diterapkan pythagoras:
Segitiga ADB : $ AD^2 = c^2 - p^2 \, $ ....pers(i).
Segitiga ADC : $ AD^2 = b^2 - (a+p)^2 \, $ ....pers(ii).
Dari pers(i) dan pers(ii), panjang AD sama, sehingga :
$ \begin{align} b^2 - (a+p)^2 & = c^2 - p^2 \\ b^2 - (a^2 + 2ap + p^2) & = c^2 - p^2 \\ b^2 - a^2 - 2ap - p^2 & = c^2 - p^2 \\ b^2 & = a^2 + c^2 + 2ap \end{align} $
Jadi terbukti persamaan : $ b^2 = a^2 + c^2 + 2ap $.
Pembuktian panjang garis tinggi dengan luas segitiga
Berdasarkan rumus luas segitiga dengan rumus Heron,
$ \text{Luas ABC} = \sqrt{s(s-a)(s-b)(s-c)} $ .

Perhatikan gambar segitiga berikut.
*). Perhatikan segitiga ABC dengan alas $ BC = a \, $ dan tinggi $ AF = t_a $
$ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{s(s-a)(s-b)(s-c)} & = \frac{1}{2}. a . t_a \\ t_a & = \frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)} \end{align} $
*). Perhatikan segitiga ABC dengan alas $ AC = b \, $ dan tinggi $ BD = t_b $
$ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{s(s-a)(s-b)(s-c)} & = \frac{1}{2}. b . t_b \\ t_b & = \frac{2}{b} \sqrt{s(s-a)(s-b)(s-c)} \end{align} $
*). Perhatikan segitiga ABC dengan alas $ AB = c \, $ dan tinggi $ CE = t_c $
$ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{s(s-a)(s-b)(s-c)} & = \frac{1}{2}. c . t_c \\ t_c & = \frac{2}{c} \sqrt{s(s-a)(s-b)(s-c)} \end{align} $
Jadi, sudah terbukti panjang garis tinggi yang diminta.

Panjang Garis-garis Istimewa pada Segitiga

         Blog Koma - Pada artikel kali ini kita akan membahas materi Panjang Garis-garis Istimewa pada Segitiga. Pada Panjang Garis-garis Istimewa pada Segitiga ini kita hanya merangkum teorinya saja tanpa ada pembuktian dan contoh soalnya. Untuk pembuktian dan contoh-contoh soalnya akan dibahas pada artikel lain secara mendalam yang akan kita sediakan link nya langsung. Garis-garis istimewa pada segitiga terdiri dari garis sumbu, garis tinggi, garis berat, dan garis bagi.

Garis Sumbu sebuah Segitiga
       Garis sumbu sebuah segitiga adalah garis yang melalui titik tengah sisi segitiga dan tegak lurus pada sisi tersebut. Perhatikan gambar garis sumbu berikut,
Dari gambar di atas, garis k sebagai garis sumbu sisi AC, garis l sebagai garis sumbu sisi AB, dan garis m sebagai garis sumbu sisi BC.

Dalil-dalil yang berkaitan dengan garis sumbu yaitu :
Dalil 1 : Ketiga garis sumbu berpotongan pada satu titik yang disebut titik sumbu.
Dalil 2 : Titik sumbu segitiga berjarak sama ke setiap titik sudut segitiga,
Jarak OA = OB = OC.
Dalil 3 : Titik sumbu segitiga adalah titik pusat lingkaran luar segitiga seperti gambar berikut ini dengan titik P adalah titik sumbu pusat lingkaran,
Garis Tinggi sebuah Segitiga
       Garis tinggi sebuah segitiga adalah garis yang melalui sebuah titik sudut segitiga dan tegak lurus pada sisi yang berhadapan dengan titik sudut tersebut. perhatikan gambar garis tinggi berikut,
dari gambar, garis tingginya adalah garis AF, BD, dan CE. Ketiga garis tinggi berpotongan di titik O yang disebut dengan titik tinggi.

Menentukan panjang garis tinggi pada segitiga :
       Untuk menentukan panjang garis tinggi, kita gunakan Dalil Proyeksi. Ada dua jenis yaitu :
*). Dali proyeksi segitiga lancip,
Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut.
Misalkan panjang $ CD = p \, $ ,
panjang $ p $ bisa ditentukan dengan rumus: $ \, c^2 = a^2 + b^2 - 2ap $

Misalkan panjang $ BD = k \, $ ,
panjang $ k $ bisa ditentukan dengan rumus: $ \, b^2 = a^2 + c^2 - 2ap $

*). Dali proyeksi segitiga tumpul,
Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut.
Misalkan panjang $ BD = p \, $ ,
panjang $ p $ bisa ditentukan dengan rumus: $ \, c^2 = a^2 + b^2 + 2ap $

Catatan :
*). Dalil proyeksi ini bisa kita gunakan untuk membuktikan dalil Stewart.
*). Untuk contoh dan pembuktian garis tinggi, lilahkan baca lebih lengkap di "Garis Tinggi dan Pembuktiannya".
Garis Berat sebuah Segitiga
       Garis berat sebuah segitiga adalah garis yang melalui sebuah titik sudut dan membagi sisi didepan sudut menjadi dua bagian sama panjang. Perhatikan gambar garis berat berikut,
dari gambar di atas, garis beratnya adalah AD, BE, dan CF. Perpotongan ketiga garis berat disebut titik berat. Ketiga garis berat berpotongan di titik berat dengan perbandingan panjang 2 : 1 ,
yaitu AO : OD = BO : OE = CO : OF = 2 : 1.

Menentukan panjang garis beratnya.
perhatikan gambar gari berat AD berikut,
Misalkan panjang $ AD = d \, $,
menentukan panjang garis berat dengan rumus :
                     $ d^2 = \frac{1}{2}b^2 + \frac{1}{2} - \frac{1}{4}a^2 $.

Untuk contoh dan pembuktian panjang garis berat, silahkan baca secara lengkap pada artikel "Garis Berat dan Pembuktiannya".
Garis Bagi sebuah Segitiga
       Garis bagi sebuah segitiga adalah garis yang ditarik dari titik sudut segitiga memotong sisi didepan titik sudut tersebut dengan membagi dua sama besar suudut tersebut, seperti gambar berikut.
Dari gambar gari sbagi di atas, garis baginya adalah garis AD, BE, dan CF. Ketiga gari bagi berpotongan di titik O yang disebut dengan titik bagi. Garis bagi membagi sisi di depannya menjadi dua bagian dengan rasio panjangnya sama dengan rasio sisi-sisi bergekatan (misalkan BD : DC = BA : AC). Titik bagi sebuah segitiga merupakan titik pusat lingkaran dalam segitiga seperti gambar berikut.

Menentukan panjang garis bagi.
perhatikan gambar garis bagi berikut,
Misalkan panjang garis bagi $ AD = d , \, $
menentukan panjang $ d \, $ dengan rumus :
                     $ d^2 = bc - mn $
dengan $ m : n = c : b $
sehingga $ m = \frac{c}{ b+ c} \times a \, $ dan $ n = \frac{b}{ b+ c} \times a $

Untuk contoh dan pembuktian panjang garis bagi, silahkan baca secara lengkap pada artikel "Garis Bagi dan Pembuktiannya".

Dalil Ceva pada Segitiga dan Pembuktiannya

         Blog Koma - Pada artikel sebelumnya kita telah mengepostkan materi "Dalil Menelaus pada Segitiga". Pada artikel kali ini, kita akan membahas materi Dalil Ceva pada Segitiga dan Pembuktiannya. Untuk memudahkan mempelajari materi ini, sebaiknya baca juga materi yang berkaitan dengan luas segitiga. Pada Dalil Ceva pada Segitiga, kita akan mempelajari dalil Ceva dan contoh soalnya, dan tidak kalah penting adalah pembuktian dalil Ceva itu sendiri dengan dua cara yaitu menggunakan luas segitiga dan dalil menelaus.

Dalil Ceva pada Segitiga
       Terdapat sebuah segitiga ABC, titik-titik D, E, dan F masing-masing terletak pada sisi BC, sisi AC, dan sisi AF seperti gambar berikut.
Dalil Ceva berbunyi :
Garis AD, BE, dan CF berpotongan di satu titik (konkuren)
jika dan hanya jika $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.


       Untuk memudahkan dalam mengingat, lihat putarannya, memutarnya bisa berlawanan jarum jam atau bisa searah putaran jarum jam seperti gambar berikut,
Dalil Ceva pada Segitiga berbentuk Trigonometri
       Terdapat sebuah segitiga ABC, titik-titik D, E, dan F masing-masing terletak pada sisi BC, sisi AC, dan sisi AF seperti gambar berikut.
Dalil Ceva trigonometri berbunyi :
Garis AD, BE, dan CF berpotongan di satu titik (konkuren)
jika dan hanya jika $ \, \, \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin \angle BAD}{\sin \angle CAD}.\frac{\sin \angle CBE}{\sin \angle ABE} = 1 $.
Contoh soal dalil Ceva pada segitiga :
1). Perhatikan gambar segitiga berikut,
Tentukan nilai $ x $ ?
Penyelesaian :
*). Langsung kita gunakan dalil Ceva,
$ \begin{align} \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} & = 1 \\ \frac{3}{2}.\frac{4}{9}.\frac{x}{1} & = 1 \\ \frac{2}{3} .x & = 1 \\ x & = \frac{3}{2} \end{align} $
Jadi, nilai $ x = \frac{3}{2} $.

2). Diketahui titik D, E, dan F masing-masing terletak pada sisi AB, sisi BC, dan sisi AC dengan perbandingan BE : EC = 2 : 3 dan AF : FC = 8 : 9. Jika panjang sisi AB = 28 cm, dan garis AE, BF, CD berpotongan di satu titik, maka tentukan panjang AD?
Penyelesaian :
*). Perhatikan gambar berikut,
*). Kita gunakan dalil ceva,
$ \begin{align} \frac{AD}{DB}. \frac{BE}{EC}. \frac{CF}{FA} & = 1 \\ \frac{AD}{DB}. \frac{2}{3}. \frac{9}{8} & = 1 \\ \frac{AD}{DB}. \frac{3}{4} & = 1 \\ \frac{AD}{DB} & = \frac{4}{3} \end{align} $
Kita peroleh perbandingan AD : DB = 4 : 3, sehingga AD : AB = 4 : 7.
*). Menentukan panjang AD
$ \begin{align} AD & = \frac{AD}{AB} \times \text{panjang AB} \\ & = \frac{4}{7} \times 28 \\ & = 16 \end{align} $
Jadi, panjang AD = 16 cm.

3). Perhatikan gambar segitiga berikut,
Jika panjang CD = 14 cm, maka tentukan panjang CO.
Penyelesaian :
*). Karena panjang CF = FA, sehingga $ \frac{CF}{FA} = 1 $.
*). Kita gunakan dalil ceva untuk AD : DB.
$ \begin{align} \frac{AD}{DB}. \frac{BE}{EC}. \frac{CF}{FA} & = 1 \\ \frac{AD}{DB}. \frac{2}{3}. 1 & = 1 \\ \frac{AD}{DB} & = \frac{3}{2} \end{align} $
kita peroleh AD : DB = 3 : 2.
*). Kita gunakan dalil menelaus pada gambar berikut,
Dalil menelaus untuk perbandingan DO : OC,
$ \begin{align} \frac{DO}{OC}. \frac{CF}{FA}. \frac{AB}{BD} & = 1 \\ \frac{DO}{OC}. 1. \frac{5}{2} & = 1 \\ \frac{DO}{OC} & = \frac{2}{5} \end{align} $
Kita peroleh perbandingan DO : OC = 2 : 5, sehingga CO : CD = 5 : 7.
*). Menentukan panjang CO
$ \begin{align} CO & = \frac{CO}{CD} \times \text{panjang CD} \\ & = \frac{5}{7} \times 14 \\ & = 10 \end{align} $
Jadi, panjang CO = 10 cm.

4). Perhatikan gambar berikut,
Diketahui perbandingan BE : EC = 2 : 3, CF : FA = 5 : 4, dan panjang AC = 15 cm. Jika garis GH sejajar dengan garis AC, tentukan panjang GH.
Penyelesaian :
*). Dalil Ceva untuk perbandingan AD : DB,
$ \begin{align} \frac{AD}{DB}. \frac{BE}{EC}. \frac{CF}{FA} & = 1 \\ \frac{AD}{DB}. \frac{2}{3}. \frac{5}{4} & = 1 \\ \frac{AD}{DB}. \frac{5}{6} & = 1 \\ \frac{AD}{DB} & = \frac{6}{5} \end{align} $
*). Dalil Menenlaus untuk perbandingan FO : OB,
$ \begin{align} \frac{FO}{OB}. \frac{BD}{DA}. \frac{AC}{CF} & = 1 \\ \frac{FO}{OB}. \frac{5}{6}. \frac{9}{5} & = 1 \\ \frac{FO}{OB}. \frac{3}{2} & = 1 \\ \frac{FO}{OB} & = \frac{2}{3} \end{align} $
*). Menentukan panjang GH dengan kesebangunan (dalil intercep),
Segitiga GBH sebangun dengan segitiga ABC,
$ \begin{align} \frac{GH}{AC} & = \frac{OB}{FB} \\ \frac{GH}{15} & = \frac{3}{5} \\ GH & = \frac{3}{5} \times 15 \\ GH & = 9 \end{align} $
Jadi, panjang GH = 9 cm.

5). Diketahui gambar segitiga seperti berikut ini,
Jika $ \sin \angle ACF = a \sin \angle BCF , \, $ maka tentukan nilai $ a^2 + 3 $.
Penyelesaian :
*). Kita gunakan dalil Ceva trigonometri,
$ \begin{align} \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin \angle BAD}{\sin \angle CAD}.\frac{\sin \angle CBE}{\sin \angle ABE} & = 1 \\ \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin 30^\circ}{\sin 45^\circ}.\frac{\sin 30^\circ}{\sin 30^\circ} & = 1 \\ \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{ \frac{1}{2} }{ \frac{1}{2}\sqrt{2} }. 1 & = 1 \\ \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{ 1 }{ \sqrt{2} } & = 1 \\ \sin \angle ACF & = \sqrt{2} \sin \angle BCF \end{align} $
Kita peroleh : $ \sin \angle ACF = \sqrt{2} \sin \angle BCF $
dan juga telah diketahui $ \sin \angle ACF = a \sin \angle BCF $
artinya nilai $ a = \sqrt{2} $.
*). Menentukan nilai $ a^2 + 3 $.
$ a^2 + 3 = (\sqrt{2})^2 + 3 = 2 + 3 = 5 $.
Jadi, nilai $ a^2 + 3 = 5 $.

Catatan :
Sebenarnya contoh-contoh soal pada artikel ini kita mempermudahnya dengan langsung ada gambarnya masing-masing. Sebenarnya untuk soal-soal lain, soalnya dalam bentuk cerita sehingga kita harus menggambarnya terlebih dulu yang tentu akan lebih mempersulit kita dalam mengerjakannya.

Pembuktian Dalil Ceva pada Segitiga
       Untuk membuktikan dalil Ceva pada segitiga, ada dua cara pembuktian yang akan ditampilkan pada artikel ini yaitu menggunakan luas segitiga dan menggunakan dalil Menenlaus .

       Pada dalil Ceva terdapat kata "jika dan hanya jika", artinya pembuktiannya ada dua arah yaitu dari kiri dan dari kanan , kedua arah harus dibuktikan.
Pembuktian dari kiri ke kanan :
Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren),
maka $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.

Pembuktian dari kanan ke kiri :
Jika berlaku $ \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 , \, $
maka garis AD, BE, dan CF berpotongan di satu titik (konkuren)
.

Pembuktian Dari kiri ke kanan
Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren),
maka $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.
Pembuktian Dalil Ceva pada Segitiga Dengan Luas segitiga
       Perhatikan gambar berikut,
*). Kita misalkan $ [ABC] \, $ menyatakan luas segitiga ABC.
*). Menentukan perbandingan AF : FB .
*). Perhatikan $\Delta$AOB,
$\Delta$AOF dengan alas AF dan $\Delta$BOF dengan alas FB memiliki tinggi yang sama misalkan $ \, t_1 $.
$ [AOF] = \frac{1}{2}.AF . t_1 \, $ dan $ [BOF] = \frac{1}{2}.FB.t_1 $
*). Perhatikan $\Delta$ACB,
$\Delta$ACF dengan alas AF dan $\Delta$BCF dengan alas FB memiliki tinggi yang sama misalkan $ \, t_2 $.
$ [ACF] = \frac{1}{2}.AF . t_2 \, $ dan $ [BCF] = \frac{1}{2}.FB.t_2 $
*). Menentukan luas segitiga AOC dan luas segitiga BOC .
$ [AOC] = [ACF]-[AOF] $.
$ [AOC] = \frac{1}{2}.AF.t_2 - \frac{1}{2}.AF . t_1 = \frac{1}{2}.AF . (t_2 - t_1) $.
$ [BOC] = [BCF]-[BOF] $ .
$ [BOC] = \frac{1}{2}.FB.t_2 - \frac{1}{2}.FB.t_1 = \frac{1}{2}.FB.(t_2-t_1) $ .
*). Perbandingan AF : FB ,
$ \begin{align} \frac{[AOC]}{[BOC]} & = \frac{\frac{1}{2}.AF . (t_2 - t_1)}{\frac{1}{2}.FB.(t_2-t_1)} \\ \frac{[AOC]}{[BOC]} & = \frac{AF}{FB} \end{align} $
Kita peroleh : $ \frac{AF}{FB} = \frac{[AOC]}{[BOC]} \, $ ....pers(a).

Dengan cara yang sama kita peroleh :
*). Menggunakan segitiga BOC dan segitiga BAC kita peroleh,
Perbandingan : $ \frac{BD}{DC} = \frac{[AOB]}{[AOC]} \, $ ....pers(b).
*). Menggunakan segitiga AOC dan segitiga ABC kita peroleh,
Perbandingan : $ \frac{CE}{EA} = \frac{[BOC]}{[AOB]} \, $ ....pers(c).

*). Kalikan ketiga perbandingan yang diperoleh :
$ \begin{align} \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} & = \frac{[AOC]}{[BOC]} . \frac{[AOB]}{[AOC]} . \frac{[BOC]}{[AOB]} = 1 \end{align} $
Jadi, terbukti bahwa Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren), maka $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.
Pembuktian Dalil Ceva pada Segitiga dengan Dalil Menelaus
       Perhatikan gambar berikut yang diperoleh dari gambar asli di atas yang dibagi menjadi dua untuk memudahkan dalam menggunakan dalil menelaus.



*). Dalil Menelaus pada gambar (a),
$ \frac{FO}{OC}. \frac{CE}{EA}. \frac{AB}{FB} = 1 \, $ ....pers(i).
*). Dalil Menelaus pada gambar (b),
$ \frac{FO}{OC}. \frac{CD}{DB}. \frac{AB}{AF} = 1 \rightarrow \frac{FO}{OC} = \frac{DB}{CD}.\frac{AF}{AB} \, $ ....pers(ii).
*). Substitusi pers(ii) ke pers(i) :
$ \begin{align} \frac{FO}{OC}. \frac{CE}{EA}. \frac{AB}{FB} & = 1 \\ \left( \frac{DB}{CD}.\frac{AF}{AB} \right). \frac{CE}{EA}. \frac{AB}{FB} & = 1 \\ \frac{DB}{CD}.\frac{AF}{FB}. \frac{CE}{EA} & = 1 \\ \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} & = 1 \end{align} $
Jadi, terbukti bahwa Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren), maka $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.
Pembuktian Dalil Ceva pada Segitiga berbentuk Trigonometri
Dalil Ceva berbunyi :
Garis AD, BE, dan CF berpotongan di satu titik (konkuren)
jika dan hanya jika $ \, \, \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin \angle BAD}{\sin \angle CAD}.\frac{\sin \angle CBE}{\sin \angle ABE} = 1 $.


Kita buktikan dari kiri ke kanan saja.
Perhatikan gambar berikut,
untuk aturan sinus, silahkan baca materinya di "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga".

Kita terapkan aturan sinus pada segitiga yang ada berikut,
*). Segitiga AOB,
$ \frac{OB}{\sin \angle BAO} = \frac{OA}{\sin \angle ABO} \rightarrow \frac{\sin \angle BAO}{\sin \angle ABO} = \frac{OB}{OA} $
$ \rightarrow \frac{\sin \angle BAD}{\sin \angle ABE} = \frac{OB}{OA} \, $ ....pers(1).
*). Segitiga BOC,
$ \frac{OC}{\sin \angle CBO} = \frac{OB}{\sin \angle BCO} \rightarrow \frac{\sin \angle CBO}{\sin \angle BCO} = \frac{OC}{OB} $
$ \rightarrow \frac{\sin \angle CBE}{\sin \angle BCF} = \frac{OC}{OB} \, $ ....pers(2).
*). Segitiga COA,
$ \frac{OA}{\sin \angle ACO} = \frac{OC}{\sin \angle CAO} \rightarrow \frac{\sin \angle ACO}{\sin \angle CAO} = \frac{OA}{OC} $
$ \rightarrow \frac{\sin \angle ACF}{\sin \angle CAD} = \frac{OA}{OC} \, $ ....pers(3).
*). Kalikan ketiga persamaan yang diperoleh :
$ \begin{align} \frac{\sin \angle BAD}{\sin \angle ABE}. \frac{\sin \angle CBE}{\sin \angle BCF} . \frac{\sin \angle ACF}{\sin \angle CAD} & = \frac{OB}{OA} . \frac{OC}{OB} . \frac{OA}{OC} \\ \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin \angle BAD}{\sin \angle CAD}.\frac{\sin \angle CBE}{\sin \angle ABE} & = 1 \end{align} $
Jadi, terbukti bahwa Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren), maka $ \, \, \frac{\sin \angle ACF}{\sin \angle BCF}.\frac{\sin \angle BAD}{\sin \angle CAD}.\frac{\sin \angle CBE}{\sin \angle ABE} = 1 $.

Pembuktian dari kanan ke kiri
Jika berlaku $ \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 , \, $
maka garis AD, BE, dan CF berpotongan di satu titik (konkuren)
.
       Sebelumnya telah terbukti dari kiri ke kanan :
Jika garis AD, BE, dan CF berpotongan di satu titik (konkuren), maka $ \, \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 $.

Misalkan AD dan BE berpotongan dititik O, perpanjangan garis CO memotong sisi AB di titik F', cukup kita tunjukkan F = F'.
Dari pembuktian dari kiri ke kanan, maka berlaku :
$ \frac{AF'}{F'B}.\frac{BD}{DC}.\frac{CE}{EA} = 1 \, $ ....pers(i).
Sementara dari arah kanan ke kiri berlaku :
$ \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 \, $ ....pers(ii).
Dari pers(i) dan pers(ii), kita peroleh :
$ \frac{AF'}{F'B} = \frac{AF}{FB} $
artinya F = F' atau titik F dan F' berimpit, sehingga terbukti bahwa garis AD, BE, dan CF berpotongan di satu titik (konkuren), atau lebih lengkapnya :
Jika berlaku $ \, \frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA} = 1 , \, $
maka garis AD, BE, dan CF berpotongan di satu titik (konkuren)
.