Sabtu, 30 Januari 2016

Pembahasan Latihan 2.1 Persamaan dan Pertidaksamaan Linear Satu Variabel kelas VII Kurikulum 2013


         Blog Koma - Matematika SMP : Setelah membahas semua materi yang berkaitan dengan Persamaan dan Pertidaksamaan Linear satu Variabel yang ada pada kelas VII kurikulum 2013, kita akan melanjutkan artikel khusus Pembahasan Latihan 2.1 Persamaan dan Pertidaksamaan Linear Satu Variabel kelas VII Kurikulum 2013. Materi dasar yang harus dikuasai untuk menjawab dan memahami pembahasan soal-soal latihan 2.1 ini kita harus menguasai materi "pernyataan dan kalimat terbuka", "persamaan linear satu variabel", "pertidaksamaan linear satu variabel", dan "soal cerita persamaan dan pertidaksamaan linear satu variabel". Pada latihan 2.1 ini ada 8 soal yang akan kita selesaikan.

Soal 1.
Nyatakan kalimat berikut "Benar" atau "Salah"
a). 8 adalah faktor dari 12.
b). Jika bilangan $ x \, $ dikalikan dua, hasilnya seperempat dari 48.
c). Diagonal-diagonal bangun datar persegi panjang saling berpotongan tegak lurus.
Penyelesaian :
a). 8 adalah faktor dari 12.
Yang dimaksud dengan faktor adalah perbaginya.
Faktor positif dari 12 yaitu {1, 2, 3, 4, 6, 12}.
Artinya 8 bukan faktor dari 12.
Jadi kalimat (a) ini "Salah".

b). Jika bilangan $ x \, $ dikalikan dua, hasilnya seperempat dari 48.
Kalimat ini tidak bisa ditentukan kebenarannya karena masih memuat variabel $ x \, $. Sehingga kalimat (b) ini disebut "kalimat terbuka".

c). Diagonal-diagonal bangun datar persegi panjang saling berpotongan tegak lurus.
Diagonal-diagonal persegi panjang berpotongan tidak tegak lurus sehingga kalimat (c) "Salah".
Soal 2.
Natakan kalimat berikut ini dengan "kalimat terbuka" atau "kalimat tertutup".
a). Hari ini adalah hari rabu.
b). Suatu bilangan dikurangi 2 hasilnya 6.
c). 4 kali $ p \, $ sama dengan 20.
d). Samarinda adalah ibukota provinsi Kalimantan Timur.
e). $ 2 + 3 = 6 $.
f). $ 4b - 9 = 4b - 9 $.
Penyelesaian :
*). Pengertian kalimat terbuka dan kalimat tertutup yang berkaitan dengan persamaan dan pertidaksamaan linear satu variabel,
Kalimat terbuka adalah kalimat yang belum bisa ditentukan kebenarannya (apakah kalimat itu sudah benar atau sudah salah).
Kalimat tertutup adalah kalimat yang sudah bisa ditentukan kebenarannya (salah saja atau benar saja).
a). Hari ini adalah hari rabu.
Termasuk "kalimat terbuka" karena kita belum tau pasti hari ini hari apa.

b). Suatu bilangan dikurangi 2 hasilnya 6.
Termasuk "kalimat terbuka" karena kita belum tau pasti bilangan yang dimaksud nilainya berapa.

c). 4 kali $ p \, $ sama dengan 20.
Termasuk "kalimat terbuka" karena memuat variabel yang kita belum tau nilai pastinya.

d). Samarinda adalah ibukota provinsi Kalimantan Timur.
Termasuk "kalimat tertutup" karena kalimat ini sudah pasti benar.

e). $ 2 + 3 = 6 $.
Termasuk "kalimat tertutup" karena kalimat ini sudah pasti salah.

f). $ 4b - 9 = 4b - 9 $. Termasuk "kalimat tertutup" karena kalimat ini sudah pasti benar.
Soal 3.
Manakah di bawah ini yang merupakan persamaan linear satu variabel (PLSV):
a). $ 2x - 4 = 8 $
b). $ -4 + 3s = 24 $
c). $ -8 - d^2 = 32 $
d). $ 5(u-2) = u - 2 $
Penyelesaian :
a). $ 2x - 4 = 8 $
Variabelnya $ x \, $ dengan pangkat 1, sehingga termasuk PLSV.

b). $ -4 + 3s = 24 $
Variabelnya $ s \, $ dengan pangkat 1, sehingga termasuk PLSV.

c). $ -8 - d^2 = 32 $
Variabelnya $ d \, $ dengan pangkat 2, sehingga bukan termasuk PLSV.

d). $ 5(u-2) = u - 2 $
Variabelnya $ u \, $ dengan pangkat 1, sehingga termasuk PLSV.
Soal 4.
Tentukan nilai $ x \, $ , jika
$ (2x+1)+(2x+2)+(2x+3)+...+(2x+50) = 4.275 $
Penyelesaian :
*). Menentukan jumlah dari $ 1 + 2 + 3 + ... + 50 \, $ dengan 50 bilangan.
Misalkan hasil penjumlahannya :
$ 1 + 2 + 3 + ... + 48 + 49 + 50 = p $
yang akan sama juga dengan $ 50 + 49 + 48 + ... + 3 + 2 + 1 = p $.
Jumlahkan kedua persamaan :
$ \begin{array}{cc} p = 1 + 2 + 3 + ... + 48 + 49 + 50 & \\ p = 50 + 49 + 48 + ... + 3 + 2 + 1 & + \\ \hline 2p = \underbrace{51 + 51 + 51 + ...+ 51 + 51}_{\text{sebanyak } 50} & \\ \end{array} $
*). Dari bentuk $ 2p = \underbrace{51 + 51 + 51 + ...+ 51 + 51}_{\text{sebanyak } 50} \, $
$ \begin{align} 2p & = \underbrace{51 + 51 + 51 + ...+ 51 + 51}_{\text{sebanyak } 50} \\ 2p & = 50 \times 51 \\ p & = \frac{50 \times 51 }{2} \\ p & = 25 \times 51 \\ p & = 1275 \end{align} $
Artinya nilai $ 1 + 2 + 3 + ... + 48 + 49 + 50 = p = 1275 $.
Sebenarnya ada rumus untuk menghitung deret ini yaitu menggunakan deret aritmatika yang akan adik-adik pelajari di kelas IX SMP.
*). Menentukan nilai $ x $,
$ \begin{align} (2x+1)+(2x+2)+(2x+3)+...+(2x+50) & = 4.275 \\ \text{(kelompokan bentuk } 2x) & \\ (\underbrace{2x + 2x + ...+ 2x}_{\text{sebanyak } 50} ) + ( \underbrace{1 + 2 + 3 + ...+ 50}_{\text{sebanyak } 50} ) & = 4.275 \\ 50 \times (2x) + 1275 & = 4.275 \\ \text{(kedua ruas dikurangkan 1275)} & \\ 100x + 1275 - 1275 = 4.275 & - 1275 \\ 100x & = 4000 \\ \text{(kedua ruas dibagi 100)} & \\ \frac{100x}{100} & = \frac{4000}{100} \\ x & = 40 \end{align} $
Jadi, nilai $ x \, $ adalah 40.
Soal 5.
Pesawat mula-mula terbang pada ketinggian 3.500 kaki di atas permukaan laut. Karena gumpalan awan, pesawat terbang naik sampai ketinggian 8000 kaki. Tentukan kenaikan posisi pesawat. ?
Penyelesaian :
*). Menyusun model matematikanyan,
Misalkan $ x \, $ menyatakan kenaikan posisi pesawat dari ketinggian 3.500 kaki sampi 8.000 kaki.
Persamaan linear satu variabelnya yaitu : $ 3.500 + x = 8.000 $
*). Menentukan nilai $ x $,
$ \begin{align} 3.500 + x & = 8.000 \\ \text{(kedua ruas dikurangkan 3.500)} & \\ 3.500 + x - 3.500 & = 8.000 - 3.500 \\ x & = 4.500 \end{align} $
Jadi, pesawat terbang mengalami kenaikan sebesar 4.500 kaki dari ketinggian 3.500 kaki sebelumnya.
Soal 6.
Harga 1 kg alpukat satu bulan yang lalu RP 6.000,00. Karena sekarang musim alpukat, harganya dipasaran turun hingga Rp 2.000,00 per kg. Coba tentukan harga penurunan alpukat dengan penjumlahan bilangan bulat.
Penyelesaian :
*). Misalkan $ y \, $ menyatakan harga penurunan alpukat.
Harganya dari 6.000 turun menjadi 2.000 artinya dikurangkan sebesar $ y \, $,
Sehingga persamaannya : $ 6000- y = 2000 $.
*). Menentukan nilai $ y $,
$ \begin{align} 6000- y & = 2000 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 6000)} \\ 6000- y - 6000 & = 2000 - 6000 \\ -y & = - 4000 \\ y & = 4000 \end{align} $
Jadi, terjadi penurunan sebesar Rp 4.000,00.
Soal 7.
Jumlah dua bilangan asli genap berurutan adalah 40. Jika bilangan pertama adalah $ a \, $, maka
a). Tentukan bilangan kedua dalam $ a $,
b). Susunlah persamaan dalam $ a \, $ , kemudian selesaikanlah,
c). Tentukan kedua bilangan itu.
Penyelesaian :
a). Bilangan genap berurutan pasti memiliki selisih 2 antara dua bilangan yang berdekatan, artinya bilangan berikutnya diperoleh dengan menjumlahkan 2 pada bilangan sebelumnya. Misalnya : 2, 4, 6, 8, 10, dan seterusnya.
Bilangan pertama adalah $ a \, $ , maka
bilangan kedua adalah $ a + 2 $.

b). Jumlh kedua bilangan adalah 40,
$ \begin{align} \text{bilangan pertama } + \text{ bilangan kedua } & = 40 \\ a + (a + 2) & = 40 \\ 2a + 2 & = 40 \end{align} $
Sehingga persamaannya dalam $ a \, $ adalah $ 2a + 2 = 40 $.
*). Menyelesaikan persamaannya,
$ \begin{align} 2a + 2 & = 40 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 2)} \\ 2a + 2 - 2 & = 40 - 2 \\ 2a & = 38 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 2 )} \\ \frac{2a}{2} & = \frac{38}{2} \\ a & = 19 \end{align} $
Sehingga kita peroleh nilai $ a = 19 $.
Catatan : Ternyata pada soal ini yang diminta bukan jumlah bilangan genap berurutan, akan tetapi bilangan ganjil berurutan. Mungkin ada kesalahan pengetikan dari pihak pembuat soalnya.

c). Menentukan kedua bilangannya,
Bilangan pertama adalah $ a = 19 \, $ , maka
bilangan kedua adalah $ a + 2 = 19 + 2 = 21 $.
Soal 8.
Lina menyiapkan 40 kotak kue untuk ulang tahunnya. Kue tersebut dibawa ke kelas untuk dibagikan ke teman sekelasnya masing-masing mendapatkan satu kotak kue. karena ada temannya yang tidak masuk, maka ada kotak kue yang tersisa.
a). Buatlah kalimat pernyataan yang menyatakan banyaknya kue yang dibagikan dengan murid yang tidak masuk.
b). Bila yang tidak masuk 3 orang, berapakah kotak kue yang dibagikan.
Penyelesaian :
a). Misalkan yang tidak masuk sebanyak $ x $,
Kalimat pernyataannya adalah : dari 40 kotak kue ternyata ada $ x \, $ orang yang tidak mendapat bagian (karena tidak masuk), sehingga kotak kue yang dibagikan sebanyak $ 40 - x $.

b). Yang tidak masuk ada 3 orang, artinya $ x = 3 $,
sehingga banyak kotak kue yang dibagikan yaitu $ 40 - x = 40 - 3 = 37 $ .
Jadi, ada 37 kotak kue yang dibagikan.

Jumat, 29 Januari 2016

Soal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel


         Blog Koma - Matematika SMP : Setelah kita mempelajari "persamaan dan pertidaksamaan linear satu variabel", kita akan lanjutkan lagi pada pembahasan yang terkait dengan soal cerita yang tentunya akan lebih menantang lagi untuk kita pelajari.

         Pada artikel ini kita akan khusus membahas materi Soal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel. Agar mudah mempelajari materi ini, sebaiknya pelajari dulu materi "penyelesaian persamaan linear satu variabel" dan "pertidaksamaan linear satu variabel".

Penyelesaian Soal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel
       Untuk menyelesaikan soal cerita, buatlah terlebih dahulu model matematika berdasarkan soal cerita tersebut. Kemudian, kita selesaikan berdasarkan persamaan atau pertidaksamaan.

       Model matematika adalah kalimat terbuka yang memuat variabel yang memiliki hubungan persamaan atau pertidaksamaan. Silahkan baca pengertian kalimat terbuka pada artikel "Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup".

Contoh soal cerita persamaan dan pertidaksamaan linear satu variabel :
1). Budi membeli 20 permen di warung yang ada di dekat rumahnya. Ketika sudah di rumah, adik-adiknya (Iwan, Wayan, dan Wati) meminta permen tersebut sehingga permen Budi tersisa 11 biji. Berapa banyak permen yang diminta oleh ketiga adiknya Budi?
Penyelesaian :
*). Membuat model matematikanya,
Misalkan banyaknya permen yang diminta oleh adiknya budi sebanyak $ x \, $ permen. Maka model matematikanya yaitu : $ 20 - x = 11 $
Bentuk persamaan linear satu variabel $ 20 - x = 11 \, $ artinya dari 20 permen diberikan $ x \, $ permen ke adik-adinya dan sisanya 11 permen.
*). Menentukan nilai $ x \, $
$ \begin{align} 20 - x & = 11 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 20)} \\ 20 - x - 20 & = 11 - 20 \\ -x & = -9 \, \, \, \, \, \, \, \text{(kedua ruas dikalikan } -1) \\ (-1) \times (-x) & = (-1) \times (-9) \\ x & = 9 \end{align} $
Jadi, ada 9 permen yang diberikan Budi kepada adik-adiknya.

2). Setiap hari Fitri menyisihkan uang jajannya untuk ditabung di rumah. Setelah 11 hari uang Fitri menjadi Rp 154.000,00. Berapa rupiahkah Fitri menyisihkan uangnya setiap hari?
Penyelesaian :
*). Membuat model matematika,
Misalkan setiap hari Fitri menyisihkan uangnya sebesar $ y \, $ rupiah.
Model matematikanya : $ 11 \times y = 154.000 \, $ yang artinya setiap hari menyisihkan uang sebesar $ y \, $ selama 11 hari dengan total tabungannya Rp 154.000,000.
sehingga terbentuk persamaan linear satu variabel : $ 11 \times y = 154.000 $ .
*). Menentukan nilai $ y $
$ \begin{align} 11 \times y & = 154.000 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 11)} \\ \frac{11 \times y}{11} & = \frac{154.000}{11} \\ y & = 14.000 \end{align} $
Jadi, Fitri menyisihkan uangnya setiap hari sebesar Rp 14.000,00 .

3). Jumlah tiga bilangan genap yang berurutan adalah 108. Tentukan bilangan-bilangan itu.
Penyelesaian :
*). Model matematikanya,
Bilangan genap berurutan pasti memiliki selisih 2 antara dua bilangan yang berdekatan, misalnya 2,4,6,8,10, dan seterusnya.
Misalkan bilangan pertamanya adalah $ a \, $.
Ketiga bilangan genapnya yaitu :
bilangan pertama : $ a $ ,
bilangan kedua : $ a + 2 $ ,
bilangan ketiga : $ (a + 2) + 2 = a + 4 $ ,
Jumlah ketiga bilangannya adalah 108, sehingga model matematikanya :
$ a + (a+2) + (a + 4) = 108 \rightarrow 3a + 6 = 108 $.
sehingga terbentuk persamaan linear satu variabel : $ 3a + 6 = 108 $.
*). Menentukan nilai $ a $
$ \begin{align} 3a + 6 & = 108 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 6)} \\ 3a + 6 - 6 & = 108 - 6 \\ 3a & = 102 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 3)} \\ \frac{3a}{3} & = \frac{102}{3} \\ a & = 34 \end{align} $
Sehingga bilangannya :
bilangan pertama : $ a = 34$ ,
bilangan kedua : $ a + 2 = 34 + 2 = 36 $ ,
bilangan ketiga : $ a + 4 = 34 + 4 = 38 $ ,
Jadi, ketiga bilangan tersebut adalah 34, 36, 38.

4). Sebuah persegi panjang mempunyai ukuran panjang ($3x - 4$) cm dan lebar ($x + 1$) cm.
a. Tulislah rumus kelilingnya dan nyatakan dalam bentuk yang paling sederhana.
b. Jika kelilingnya 34 cm, tentukan luas persegi panjang tersebut.
Penyelesaian :
*). Untuk rumus keliling dan luas persegi panjang, silahkan baca pada artikel "Sifat, Keliling, dan Luas Persegi Panjang".
a). Keliling persegi panjang, dengan $ p = 3x - 4 \, $ dan $ l = x + 1 $
$ \begin{align} \text{Keliling} & = 2p + 2l \\ & = 2(3x - 4) + 2(x+ 1) \\ & = 6x - 8 + 2x + 2 \\ & = 8x - 6 \end{align} $
Sehingga keliling persegi panjangnya adalah ($8x - 6$).
b). Menentukan nilai $ x \, $ dengan kelilingnya 34.
$ \begin{align} \text{Keliling} & = 34 \\ 8x - 6 & = 34 \, \, \, \, \, \, \, \text{(kedua ruas ditambahkan 6)} \\ 8x - 6 + 6 & = 34 + 6 \\ 8x & = 40 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 8)} \\ \frac{8x}{8} & = \frac{40}{8} \\ x & = 5 \end{align} $
*). Menentukan panjang dan lebarnya dengan nilai $ x = 5 $,
$ p = 3x - 4 = 3 \times 5 - 4 = 15 - 4 = 11 $
$ l = x + 1 = 5 + 1 = 6 $
*). Menentukan luas persegi panjanga :
Luas $ = p \times l = 11 \times 6 = 66 $.
Jadi, luas persegi panjangnya adalah 66 cm$^2$.

5). Seorang petani mempunyai sebidang tanah berbentuk persegi panjang. Lebar tanah tersebut 6 m lebih pendek daripada panjangnya. Jika keliling tanah 60 m, tentukan luas tanah petani tersebut.
Penyelesaian :
*). model matematika,
Misalkan panjang tanah = $ x $ maka lebar tanah = $ x - 6$.
Keliling $ = 2p + 2l = 2x + 2(x-6) = 2x + 2x - 12 = 4x - 12 $.
*). Menentukan nilai $ x \, $ dengan kelilingnya 60,
$ \begin{align} \text{Keliling} & = 60 \\ 4x - 12 & = 60 \, \, \, \, \, \, \, \text{(kedua ruas ditambahkan 12)} \\ 4x - 12 + 12 & = 60 + 12 \\ 4x & = 72 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 4)} \\ \frac{4x}{4} & = \frac{72}{4} \\ x & = 18 \end{align} $
Sehingga : $ p = x = 18 \, $ dan $ l = x - 6 = 18 - 6 = 12 $.
*). Menentukan luas persegi panjanga :
Luas $ = p \times l = 18 \times 12 = 216 $.
Jadi, luas tanahnya adalah 216 m$^2$.

Penyelesaian Soal Cerita Pertidaksamaan Linear Satu Variabel
       Untuk soal cerita yang berkaitan dengan pertidaksamaan, poin penting yang harus kita pahami adalah penggunaan tanda ketaksamaannya ($>, \, \geq , \, \leq , \, < $).

Berikut kata-kata yang biasa dipakai pada soal cerita dan tanda ketaksamaan yang sesuai :
*). Tanda $ < \, $ dipakai jika ada kata-kata : kurang dari, lebih kecil, tidak lebih dari atau sama dengan, tidak lebih besar atau sama dengan.

*). Tanda $ \leq \, $ dipakai jika ada kata-kata : kurang dari atau sama dengan , lebih kecil atau sama dengan, sebesar-besarnya, maksimum, maksimal, tidak lebih dari.

*). Tanda $ > \, $ dipakai jika ada kata-kata : lebih dari, lebih besar, tidak lebih kecil atau sama dengan, tidak kurang dari atau sama dengan.

*). Tanda $ \geq \, $ dipakai jika ada kata-kata : lebih dari atau sama dengan, lebih besar atau sama dengan, tidak kurang dari, sekecil-kecilnya, minimum, minimal.

Contoh soal cerita pertidaksamaan linear satu variabel :
6). Umur Budi dan Iwan masing-masing ($5x - 2$) dan ($ 2x + 4$). Jika umur Budi lebih dari umur Iwan, maka tentukan nilai $ x $.
Penyelesaian :
*). Menyusun model matematikanya,
Kata yang digunakan "lebih dari", sehingga menggunakan tanda "$>$".
Umur Budi lebih dari umur Iwan,
Pertidaksamaan linear satu variabelnya : $ 5x - 2 > 2x + 4 $.
*). Menentukan nilai $ x \, $
$ \begin{align} \text{Keliling} & = 60 \\ 5x - 2 & > 2x + 4 \, \, \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ 5x - 2 + 2 & > 2x + 4 + 2 \\ 5x & > 2x + 6 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan } 2x) \\ 5x - 2x & > 2x + 6 -2x \\ 3x & > 6 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 3)} \\ \frac{3x}{3} & > \frac{6}{3} \\ x & > 2 \end{align} $
Jadi, nilai $ x \, $ adalah $ x > 2 $.

7). Rumah ibu Suci dibangun di atas sebidang tanah berbentuk persegi panjang dengan panjang 20 m dan lebar ($6y-1$) m. Jika luas tanah ibu Suci tidak kurang dari 100 m$^2$.
a). Berapa lebar minimal tanah ibu Suci?
b). Jika biaya untuk membangun rumah seluas 1 m$^2$ adalah Rp 2.000.000,00. Berapakah biaya minimal yang harus disediakan ibu suci jika seluruh tanahnya dibangun rumah?
*). Model matematika,
Luas $ = p \times l = 20 \times (6y - 1) = 120y - 20 $.
Kata yang digunakan luas "tidak kurang dari", sehingga tandanya "$\geq$".
Model matematikanya : Luas $ \geq 100 \rightarrow 120y - 20 \geq 100 $.
Sehingga pertidaksamaannya : $ 120y - 20 \geq 100 $.
a). Menentukan nilai $ y $,
$ \begin{align} \text{Keliling} & = 60 \\ 120y - 20 & \geq 100 \, \, \, \, \, \, \, \text{(kedua ruas ditambahkan 20)} \\ 120y - 20 + 20 & \geq 100 + 20 \\ 120y & \geq 120 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 120)} \\ \frac{120y}{120} & \geq \frac{120}{120} \\ y & \geq 1 \end{align} $
kita peroleh nilai minimal $ y \, $ adalah $ y = 1 \, $ karena $ y \geq 1 $ .
Sehingga lebar minimalnya : $ l = 6y - 1 = 6 \times 1 -1 = 6 - 1 = 5 \, $ m.
Jadi, lebar tanah minimal ibu Suci adalah 5 m.

b). Biaya akan minimal jika luas tanah minimal, sehingga panjangnya 20 m dan lebarnya 5 m.
Luas minimal $ = p \times l = 20 \times 5 = 100 \, $ m$^2$.
Biaya minimal $ = 100 \times 2.000.000 = 200.000.000 $.
Jadi, biaya minimal yang harus disiapkan oleh ibu Suci untuk membangun rumah di atas seluruh tanahnya adalah Rp 200.000.000,00.

8). Pak Fredy memiliki sebuah mobil box pengangkut barang dengan daya angkut tidak lebih dari 500 kg. Berat pak Fredy adalah 60 kg dan dia akan mengangkut kotak barang yang setiap kotak beratnya 20 kg.
a). Tentukan banyak kotak paling banyak yang dapat diangkut oleh pak Fredy dalam sekali pengangkutan?
b). Jika pak Fredy akan mengangkut 115 kotak, paling sedikit berapa kali pengangkutan kotak itu akan terangkut semua?
Penyelesaian :
*). Model matematika,
Misalkan $ x \, $ menyatakan banyaknya kotak yang diangkut oleh mobil untuk sekali jalan.
Setiap kotak beratnya 20 kg, sehingga $ x \, $ kotak beratnya $ 20x $.
Total berat sekali jalan adalah berat kotak ditambah berat pak Fredy yaitu $ 20x + 60 $.
Daya angkut mobil tidak lebih dari, sehingga tandanya "$\leq$".
Daya angkut tidak lebih dari 500 kg ditulis $ 20x + 60 \leq 500 $.
a). Menentukan nilai $ x $,
$ \begin{align} 20x + 60 & \leq 500 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 60)} \\ 20x + 60 - 60 & \leq 500 - 60 \\ 20x & \leq 440 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 20)} \\ \frac{20x}{20} & \leq \frac{440}{20} \\ x & \leq 22 \end{align} $
Dari $ x \leq 22 \, $ kita peroleh nilai maksimum dari $ x \, $ adalah 22, artinya setiap kali jalan mobil box mampu mengangkut paling banyak 22 kotak.

b). Agar pengangkutan dilakukan sesedikit mungkin, maka setiap kali jalan harus bisa membawa kotak paling banyak yaitu 22 kotak.
Misalkan $ y \, $ menyatakan banyaknya keberangkatan (perjalanan),
Setiap kali jalan mengangkut 22 kotak, sehingga untuk $ y \, $ perjalanan akan terangkut $ 22y \, $ kotak.
Akan diangkut 115 kotak, artinya untuk semua perjalanan minimal harus 115 kotak harus terangkut. Sehingga model matematikanya : $ 22y \geq 115 $,
*). Menentukan nilai $ y \, $
$ \begin{align} 22y & \geq 115 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 22)} \\ \frac{22y}{22} & \geq \frac{115}{22} \\ y & \geq 5,227 \end{align} $
Dari $ y \geq 5,227 \, $ dan $ y \, $ bilangan bulat positif(banyaknya perjalanan), maka nilai terkecil dari $ y \, $ adalah 6.
Jadi, paling sedikit 6 kali perjalanan untuk mengankut 115 kotak.

9). Suatu model kerangka balok terbuat dari kawat dengan ukuran panjang ($x + 5$) cm, lebar ($x - 2$) cm, dan tinggi $ x $ cm.
a). Tentukan model matematika dari persamaan panjang kawat yang diperlukan dalam $ x $.
b). Jika panjang kawat yang digunakan seluruhnya tidak lebih dari 132 cm, tentukan ukuran maksimum balok tersebut.
Penyelsaian :
*). Gambar baloknya.
a). Misalkan $ K \, $ menyatakan total panjang kawat yang dibutihkan untuk membuat kerangka balok. Total panjang kawat yang dibutuhkan adalah jumlah dari semua rusuknya, sehingga panjang $ K \, $ yaitu :
$ \begin{align} K & = 4p + 4l + 4t \\ & = 4(x+5) + 4(x-2) + 4x \\ & = 4x + 20 + 4x - 8 + 4x \\ & = 12x + 12 \end{align} $
Jadi, panjang kawatnya adalah $ K = 12x + 12 $.

b). Panjang kawat tidak lebih dari 132 cm dapat ditulis $ K = 12x + 12 \leq 132 \, $ cm,
sehingga diperoleh :
$ \begin{align} 12x + 12 & \leq 132 \, \, \, \, \, \, \, \text{(kedua ruas dikurangkan 12)} \\ 12x + 12 - 12 & \leq 132 - 12 \\ 12x & \leq 120 \, \, \, \, \, \, \, \text{(kedua ruas dibagi 12)} \\ \frac{12x}{12} & \leq \frac{120}{12} \\ x & \leq 10 \end{align} $
Dari bentuk $ x \leq 10 \, $ , maka nilai maksimum dari $ x \, $ adalah 10.
*). Menentukan ukuran balok :
Panjang $ = x + 5 = 10 + 5 = 15 \, $ cm ,
Lebar $ = x - 2 = 10 - 2 = 8 \, $ cm ,
Tinggi $ = x = 10 \, $ cm.
Jadi, ukuran maksimum balok adalah ($15 \times 8 \times 10$) cm.

Kamis, 28 Januari 2016

Pertidaksamaan Linear Satu Variabel


         Blog Koma - Matematika SMP : Pada artikel ini kita akan membahas materi Pertidaksamaan Linear Satu Variabel yang merupakan lanjutan dari materi sebelumnya yaitu "Persamaan Linear Satu Variabel". Untuk memudahkan mempelajari materi Pertidaksamaan Linear Satu Variabel, silahkana baca dulu "Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup" terutama tentang kalimat terbuka.

Pengertian Pertidaksamaan
       Kalimat terbuka yang menyatakan hubungan ketidaksamaan ( menggunakan tanda ketaksamaan : $<, >$, $\leq$ , atau $ \geq$ ) disebut pertidaksamaan.

Cara membaca tanda ketaksamaan :
$ < \, $ dibaca kurang dari,
$ \leq \, $ dibaca kurang dari atau sama dengan,
$ > \, $ dibaca lebih dari,
$ \geq \, $ lebih dari atau sama dengan.

       Grafik himpunan penyelesaian persamaan linear satu variabel ditunjukkan pada suatu garis bilangan, yaitu berupa noktah (titik). Demikian halnya pada pertidaksamaan linear satu variabel.

Contoh Soal.
1). Misalkan $ x \, $ adalah bilangan bulat. Apa arti dari pertidaksamaan berikut ini,
a). $ x < 2 $
b). $ x \leq 2 $
c). $ x > 2 $
d). $ x \geq 2 $
Penyelesaian :
a). $ x < 2 $
Bentuk $ x < 2 \, $ dibaca $ x \, $ kurang dari 2, artinya nilai $ x \, $ lebih kecil dari 2 (angka 2 tidak termasuk), sehingga himpunan nilai $ x \, $ yang memenuhi adalah $ x = \{ ...,-3,-2,-1,0,1 \} $.
Garis bilangannya :

b). $ x \leq 2 $
Bentuk $ x \leq 2 \, $ dibaca $ x \, $ kurang dari atau sama dengan 2, artinya nilai $ x \, $ lebih kecil dari 2 serta sama dengan 2 (angka 2 termasuk), sehingga himpunan nilai $ x \, $ yang memenuhi adalah $ x = \{ ...,-3,-2,-1,0,1,2 \} $.
Garis bilangannya :

c). $ x > 2 $
Bentuk $ x > 2 \, $ dibaca $ x \, $ lebih dari 2, artinya nilai $ x \, $ lebih besar dari 2 (angka 2 tidak termasuk), sehingga himpunan nilai $ x \, $ yang memenuhi adalah $ x = \{ 3,4,5,6,.... \} $.
Garis bilangannya :

d). $ x \geq 2 $
Bentuk $ x \geq 2 \, $ dibaca $ x \, $ lebih dari atau sama dengan 2, artinya nilai $ x \, $ lebih besar dari 2 serta sama dengan 2 (angka 2 termasuk), sehingga himpunan nilai $ x \, $ yang memenuhi adalah $ x = \{ 2,3,4,5,6,.... \} $.
Garis bilangannya :

Pengertian Pertidaksamaan Linear Satu Variabel
       Pertidaksamaan linear satu variabel adalah pertidaksamaan yang hanya mempunyai satu variabel dan berpangkat satu (linear). Bentuk umum pertidaksamaan linear satu variabel yaitu :
$ ax + b > 0 \, $ atau $ ax + b \geq 0 \, $ atau $ ax + b \leq 0 \, $ atau $ ax + b < 0 $.
Contoh soal pertidaksamaan linear satu variabel :
2). Dari bentuk-bentuk berikut, tentukan yang merupakan pertidaksamaan linear dengan satu variabel.
a). $ x - 3 < 5 $
b). $ a \leq 1 - 2b $
c). $ x^2 - 3x \geq 4 $
d). $ 2x + 3 \leq \frac{1}{3}(x - 1) - 7 $
Penyelesaian :
a). $ x - 3 < 5 $
Pertidaksamaan $ x - 3 < 5 \, $ mempunyai satu variabel, yaitu $ x \, $ dan berpangkat 1, sehingga $ x - 3 < 5 \, $ merupakan pertidaksamaan linear satu variabel.

b). $ a \leq 1 - 2b $
Pertidaksamaan $ a \leq 1 - 2b \, $ mempunyai dua variabel, yaitu $ a $ dan $ b $ yang masing-masing berpangkat 1. Dengan demikian $ a \leq 1 - 2b \, $ bukan suatu pertidaksamaan linear satu variabel.

c). $ x^2 - 3x \geq 4 $
Karena pertidaksamaan $ x^2 - 3x \geq 4 \, $ mempunyai variabel $ x \, $ dan $ x^2 $, maka $ x^2 - 3x \geq 4 \, $ bukan merupakan pertidaksamaan linear satu variabel.

d). $ 2x + 3 \leq \frac{1}{3}(x - 1) - 7 $
Pertidaksamaan $ 2x + 3 \leq \frac{1}{3}(x - 1) - 7 \, $ mempunyai satu variabel, yaitu $ x \, $ dan berpangkat 1, sehingga $ 2x + 3 \leq \frac{1}{3}(x - 1) - 7 \, $ merupakan pertidaksamaan linear satu variabel.

Penyelesaian Pertidaksamaan Linear Satu Variabel
       Pengganti variabel dari suatu pertidaksamaan, sehingga menjadi pernyataan yang benar disebut penyelesaian dari pertidaksamaan linear satu variabel.

Suatu pertidaksamaan dapat dinyatakan ke dalam pertidaksamaan yang ekuivalen dengan cara sebagai berikut.
a). Menambah atau mengurangi kedua ruas dengan bilangan yang sama tanpa mengubah tanda ketidaksamaan.
b). Mengalikan atau membagi kedua ruas dengan bilangan positif yang sama tanpa mengubah tanda ketidaksamaan.
c). Mengalikan atau membagi kedua ruas dengan bilangan negatif yang sama, tetapi tanda ketidaksamaan berubah, dimana
1). $ > \, $ menjadi <
2). $ < $ menjadi $ > $
3). $ \leq $ menjadi $ \geq $
4). $ \geq $ menjadi $ \leq $ .

Catatan :
Pertidaksamaan linear satu variabel dapat diselesaikan dengan bentuk ekuivalennya.
Contoh soal penyelesaian pertidaksamaan linear satu variabel :
3). Tentukan himpunan penyelesaian dari pertidaksamaan linear satu variabel berikut ini.
a). $ 3x - 2 > 4 $
b). $ 3x - 2 \geq 4 $
c). $ x - 2 \leq 3x + 2 $
dengan $ x \, $ adalah bilangan bulat.
Penyelesaian :
a). $ 3x - 2 > 4 $
*). Kita gunakan bentuk ekuivalennya :
$ \begin{align} 3x - 2 & > 4 \, \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ 3x - 2 + 2 & > 4 + 2 \\ 3x & > 6 \, \, \, \, \, \, \text{(kedua ruas ditambahkan 3)} \\ \frac{3x}{3} & > \frac{6}{3} \\ x & > 2 \end{align} $
Sehingga penyelesaiannya adalah $ x > 2 \, $ atau
himpunan penyelesaiannya : $ x = \{3,4,5,6,...\} \, $
dengan $ x \, $ adalah bilangan bulat.

b). $ 3x - 2 \geq 4 $
*). Kita gunakan bentuk ekuivalennya :
$ \begin{align} 3x - 2 & \geq 4 \, \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ 3x - 2 + 2 & \geq 4 + 2 \\ 3x & \geq 6 \, \, \, \, \, \, \text{(kedua ruas ditambahkan 3)} \\ \frac{3x}{3} & \geq \frac{6}{3} \\ x & \geq 2 \end{align} $
Sehingga penyelesaiannya adalah $ x \geq 2 \, $ atau
himpunan penyelesaiannya : $ x = \{2,3,4,5,6,...\} \, $
dengan $ x \, $ adalah bilangan bulat.

c). $ x - 2 \leq 3x + 2 $
*). Kita gunakan bentuk ekuivalennya :
$ \begin{align} x - 2 & \leq 3x + 2 \, \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ x - 2 + 2 & \leq 3x + 2 + 2 \\ x & \leq 3x + 4 \, \, \, \, \, \, \text{(kedua ruas dikurangkan } 3x) \\ x - 3x & \leq 3x + 4 - 3x \\ -2x & \leq 4 \, \, \, \, \, \, \text{(kedua ruas dibagi -2, tanda ketaksamaan dibalik)} \\ \frac{-2x}{-2} & \geq \frac{4}{-2} \\ x & \geq -2 \end{align} $
Sehingga penyelesaiannya adalah $ x \geq -2 \, $ atau
himpunan penyelesaiannya : $ x = \{-2,-1,0,1,2,3,...\} \, $
dengan $ x \, $ adalah bilangan bulat.

4). Tentukan himpunan penyelesaian dari pertidaksamaan $ 4x - 2 \leq 5 + 3x $ , untuk $ x $ variabel pada himpunan bilangan asli. Kemudian, gambarlah grafik himpunan penyelesaiannya.
Penyelesaian :
$ \begin{align} 4x - 2 & \leq 5 + 3x \, \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ 4x - 2 + 2 & \leq 5 + 3x + 2 \\ 4x & \leq 7 + 3x \, \, \, \, \, \, \text{(kedua ruas dikurangkan } 3x) \\ 4x - 3x & \leq 7 + 3x - 3x \\ x & \leq 7 \end{align} $
Sehingga penyelesaiannya adalah $ x \leq 7 \, $ atau
himpunan penyelesaiannya : $ x = \{1,2,3,...,6,7\} \, $
untuk $ x \, $ adalah bilangan asli.
Garis bilangannya :

5). Tentukan himpunan penyelesaian pertidaksamaan $ \frac{1}{2}x + 3 \leq \frac{1}{5} x \, $ , dengan $ x \, $ adalah variabel pada himpunan $ \{-15,-14,-13,...,-1,0\} $.
Penyelesaian :
*). Untuk memudahkan menyelesaikan pertidaksamaan linear satu variabel dalam bentuk pecahan, sebaiknya kita kalikan dengan KPK dari penyebut yang ada.
*). Bentuk $ \frac{1}{2}x + 3 \leq \frac{1}{5} x \, $ memiliki penyebut 2 dan 5, sehingga KPKnya adalah 10.
$ \begin{align} \frac{1}{2}x + 3 & \leq \frac{1}{5} x \, \, \, \, \, \, \text{(kedua ruas dikalikan 10)} \\ 10 \times \left( \frac{1}{2}x + 3 \right) & \leq 10 \times \frac{1}{5} x \\ 10 \times \frac{1}{2}x + 10 \times 3 & \leq 2x \\ 5x + 30 & \leq 2x \, \, \, \, \, \, \text{(kedua ruas dikurangkan 30)} \\ 5x + 30 - 30 & \leq 2x - 30 \\ 5x & \leq 2x - 30 \, \, \, \, \, \, \text{(kedua ruas dikurangkan } 2x) \\ 5x - 2x & \leq 2x - 30 - 2x \\ 3x & \leq - 30 \, \, \, \, \, \, \text{(kedua ruas dibagi 3)} \\ \frac{3x}{3} & \leq \frac{- 30}{3} \\ x & \leq -10 \end{align} $
Sehingga penyelesaiannya adalah $ x \leq -10 \, $ atau
himpunan penyelesaiannya : $ x = \{-15,-14,...,-10 \} \, $
untuk $ x \, $ adalah himpunan bilangan $ \{-15,-14,-13,...,-1,0\} $.

Rabu, 27 Januari 2016

Penyelesaian Persamaan Linear Satu Variabel


         Blog Koma - Matematika SMP : Setelah sebelumnya kita belajar tentang materi "Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup" , kita akan lanjutkan materi Penyelesaian Persamaan Linear Satu Variabel. Hal-hal yang akan kita bahas dalam Penyelesaian Persamaan Linear Satu Variabel yaitu pengertian persamaan linear satu variabel, dan bagaimana cara menentukan himpunan penyelesaiaan persamaannya.

Pengertian Persamaan Linear satu Variabel
       Persamaan linear satu variabel adalah kalimat terbuka yang dihubungkan oleh tanda sama dengan ($=$) dan hanya mempunyai satu variabel berpangkat satu. Bentuk umum persamaan linear satu variabel adalah $ \, ax + b = 0 \, $ dengan $ \, a \neq 0$.

       Variabel adalah lambang (simbol) pada kalimat terbuka yang dapat diganti oleh sebarang anggota himpunan yang telah ditentukan. Variabel biasanya dilambangkan dengan huruf kecil.
Catatan :
*). Pangkat dari suatu variabel $ x \, $ adalah $ n \, $ dapat ditulis : $ x^n $.
*). Khusus untuk pangkat 1, biasanya tidak ditulis. Misalkan variabel $ x \, $ pangkat 1 ditulis $ x \, $ saja.
*). Angka didepan variabel disebut sebagai koefisiennya dan tidak mempengaruhi pangkat dari variabel tersebut. Misalkan, bentuk $ 3x \, $ memiliki pangkat 1 dengan koefisiennya 3.
*). Angka yang tidak memiliki variabel disebut sebagai konstanta. Misalkan, bentuk $ 5x - 7 = 0 \, $ memiliki konstanta $ \, -7 $.
*). Seberapa banyakpun variabel yang sama ditulis dalam suatu persamaan tetap akan dianggap satu variabel saja. Misalkan, bentuk $ 2x - 3 + x^3 + 2x^5 = -5x^\frac{1}{5} + 2x - 7 \, $ tetap variabelnya adalah $ \, x \, $ saja.

Contoh soal persamaan linear satu variabel :
1). Dari bentuk persamaan berikut ini, tentukan manakah yang merupakan persamaan linear satu variabel,
a). $ 2x - 5 = 7 $
b). $ x^2 + 3x = 2 $
c). $ \frac{2}{5}x = 3 $
d). $ 3x - 2y = 8 $
e). $ 3(x-1) = x + 5 - \frac{1}{7}x $
f). $ x^\frac{3}{2} - 5 = 2 + 5x $
Penyelesaian :
a). $ 2x - 5 = 7 $
Variabel pada $ 2x - 5 = 7 \, $ adalah $ x \, $ dan berpangkat 1, sehingga merupakan persamaan linear satu variabel.

b). $ x^2 + 3x = 2 $
Variabel pada $ x^2 + 3x = 2 \, $ adalah $ x \, $ dan berpangkat 1 dan 2, sehingga bukan persamaan linear satu variabel.

c). $ \frac{2}{5}x = 3 $
Variabel pada $ \frac{2}{5}x = 3 \, $ adalah $ x \, $ dan berpangkat 1, sehingga merupakan persamaan linear satu variabel.

d). $ 3x - 2y = 8 $
Variabel pada $ 3x - 2y = 8 \, $ adalah $ x \, $ dan $ y \, $ , karena variabelnya lebih dari 1 maka bentuk $ \, 3x - 2y = 8 \, $ bukan persamaan linear satu variabel.

e). $ 3(x-1) = x + 5 - \frac{1}{7}x $
Variabel pada $ 3(x-1) = x + 5 - \frac{1}{7}x \, $ adalah $ x \, $ dan berpangkat 1, sehingga merupakan persamaan linear satu variabel.

f). $ x^\frac{3}{2} - 5 = 2 + 5x $
Variabel pada $ x^\frac{3}{2} - 5 = 2 + 5x \, $ adalah $ x \, $ dan berpangkat $ \, \frac{3}{2} \, $ dan 1, sehingga bukan persamaan linear satu variabel.

Himpunan Penyelesaian Persamaan Linear Satu Variabel
       Himpunan penyelesaian Persamaan Linear Satu Variabel adalah himpunan semua pengganti dari variabel-variabel pada kalimat terbuka sehingga kalimat tersebut bernilai benar.

Contoh soal himpunan penyelesaian persamaan linear satu variabel :
2). Tentukan himpunan penyelesaian dari persamaan $ x - 3 = 1 \, $ ?
Penyelesaian :
Bentuk $ x - 3 = 1 \, $ memeiliki penyelesaian untuk $ x = 4 \, $ karena $ 4 - 3 = 1 \, $.
Sehingga himpunan penyelesaiannya adalah $ x = \{ 4 \} $.

Persamaan yang ekuivalen
       Dua persamaan atau lebih dikatakan ekuivalen jika mempunyai himpunan penyelesaian yang sama dan dinotasikan dengan tanda " $\Leftrightarrow$ ".
Contoh persamaan yang ekuivalen :
3). Pada persamaan $ x - 5 = 4$ , jika $ x $ diganti 9 maka akan bernilai benar, sehingga himpunan penyelesaian dari $ x - 5 = 4 \, $ adalah {9}. Perhatikan jika kedua ruas masing-masing ditambahkan dengan bilangan 5 maka
$ \begin{align} x - 5 & = 4 \\ \Leftrightarrow x - 5 + 5 & = 4 + 5 \\ \Leftrightarrow x + 0 & = 9 \\ \Leftrightarrow x & = 9 \end{align} $
Dengan kata lain, persamaan $ x - 5 = 4 \, $ ekuivalen dengan persamaan $ x = 9$, atau ditulis $x - 5 = 4 \Leftrightarrow x = 9 $.

Cara Menyelesaikan Persamaan Linear Satu Variabel
       Untuk memudahkan menyelesaikan persamaan linear satu variabel, kita akan menggukanan konsep persamaan yang ekuivalen.

Suatu persamaan dapat dinyatakan ke dalam persamaan yang ekuivalen dengan cara
a). menambah atau mengurangi kedua ruas dengan bilangan yang sama;
b). mengalikan atau membagi kedua ruas dengan bilangan yang sama.
Contoh Soal :
4). Tentukan 4 bentuk yang setara (ekuivalen) dengan persamaan linear $ 2x - 1 = 5 $
Penyelesaian :
*). Berikut bentuk-bentuk yang ekuivalen :
i). kedua ruas ditambahkan 1,
$ \begin{align} 2x - 1 & = 5 \\ 2x - 1 + 1 & = 5 + 1 \\ 2x & = 6 \end{align} $
sehingga bentuk ekuivalen persamaannya adalah $ 2x = 6 $.

ii). kedua ruas dikurangkan 3 ,
$ \begin{align} 2x - 1 & = 5 \\ 2x - 1 - 3 & = 5 -3 \\ 2x - 4 & = 2 \end{align} $
sehingga bentuk ekuivalen persamaannya adalah $ 2x - 4 = 2 $.

iii). kedua ruas dikalikan 2,
$ \begin{align} 2x - 1 & = 5 \\ 2 \times (2x - 1 ) & = 2 \times 5 \\ 4x - 2 & = 10 \end{align} $
sehingga bentuk ekuivalen persamaannya adalah $ 4x - 2 = 10 $.

iv). kedua ruas dibagi 4,
$ \begin{align} 2x - 1 & = 5 \\ \frac{(2x - 1 )}{4} & = \frac{5}{4} \\ \frac{2x }{4} - \frac{1 }{4} & = \frac{5}{4} \\ \frac{x }{2} - \frac{1 }{4} & = \frac{5}{4} \\ \frac{1 }{2} x - \frac{1 }{4} & = \frac{5}{4} \end{align} $
sehingga bentuk ekuivalen persamaannya adalah $ \frac{1 }{2} x - \frac{1 }{4} = \frac{5}{4} $.

Jadi persamaan $ 2x - 1 = 5 \, $ ekuivalen atau setara dengan persamaan
$ 2x = 6, \, 2x - 4 = 2, \, 4x - 2 = 10, \, \frac{1 }{2} x - \frac{1 }{4} = \frac{5}{4} $.

5). Tentukan penyelesaian dari persamaan $ 2x - 1 = 5 $
Penyelesaian :
*). Untuk menyelesaiannya, kita gunakan sifat ekuvalen.
$ \begin{align} 2x - 1 & = 5 \, \, \, \, \, \text{(kedua ruas ditambah 1)} \\ 2x - 1 + 1 & = 5 + 1 \\ 2x & = 6 \, \, \, \, \, \text{(kedua ruas dibagi 2)} \\ \frac{2x}{2} & = \frac{6}{2} \\ x & = 3 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ 3 \} $.

6). Tentukan penyelesaian persamaan linear $ 4x - 3 = 3x + 5 $
Penyelesaian :
*). Untuk menyelesaiannya, kita gunakan sifat ekuvalen.
$ \begin{align} 4x - 3 & = 3x + 5 \, \, \, \, \, \text{(kedua ruas ditambah 3)} \\ 4x - 3 + 3 & = 3x + 5 + 3 \\ 4x & = 3x + 8 \, \, \, \, \, \text{(kedua ruas dikurangkan } 3x) \\ 4x - 3x & = 3x + 8 - 3x \\ x & = 8 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ 8 \} $.

7). Tentukan penyelesaian persamaan linear $ 3x + 13 = 5 - x $
Penyelesaian :
*). Untuk menyelesaiannya, kita gunakan sifat ekuvalen.
$ \begin{align} 3x + 13 & = 5 - x \, \, \, \, \, \text{(kedua ruas dikurang 13)} \\ 3x + 13 - 13 & = 5 - x - 13 \\ 3x & = -8 - x \, \, \, \, \, \text{(kedua ruas ditambah } x) \\ 3x + x & = -8 - x + x \\ 4x & = -8 \, \, \, \, \, \text{(kedua ruas dikali } \frac{1}{4}) \\ \frac{1}{4} \times 4x & = \frac{1}{4} \times (-8 ) \\ x & = -2 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ -2 \} $.

8). Tentukan penyelesaian persamaan linear $ \frac{1}{2}x - 2 = 1 $
Penyelesaian :
*). Untuk menyelesaiannya, kita gunakan sifat ekuvalen.
$ \begin{align} \frac{1}{2}x - 2 & = 1 \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ \frac{1}{2}x - 2 + 2 & = 1 + 2 \\ \frac{1}{2}x & = 3 \, \, \, \, \, \text{(kedua ruas dikalikan 2)} \\ 2 \times \frac{1}{2}x & = 2 \times 3 \\ x & = 6 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ 6 \} $.

9). Tentukan penyelesaian persamaan linear $ \frac{1}{5}x - 2 = \frac{x-1}{2} $
Penyelesaian :
*). Jika persamaan linearnya memuat pecahan lebih dari satu, maka untuk memudahkan dalam menyelesaikannya kita harus mengalikan dengan KPK dari penyebut pecahan yang merupakan bagian dari sifat ekuivalen.
*). Bentuk $ \frac{1}{5}x - 2 = \frac{x-1}{2} \, $ memuat pecahan dengan penyebut 5 dan 2 dengan KPKnya 10, ini artinya kedua ruas kita kalikan 10.
$ \begin{align} \frac{1}{5}x - 2 & = \frac{x-1}{2} \, \, \, \, \, \text{(kedua ruas dikalikan 10)} \\ 10 \times \left( \frac{1}{5}x - 2 \right) & = 10 \times \left( \frac{x-1}{2} \right) \\ 10 \times \frac{1}{5}x - 10 \times 2 & = \frac{10(x-1)}{2} \\ 2x - 20 & = 5(x-1) \\ 2x - 20 & = 5x - 5 \, \, \, \, \, \text{(kedua ruas ditambahkan 20)} \\ 2x - 20 + 20 & = 5x - 5 + 20 \\ 2x & = 5x + 15 \, \, \, \, \, \text{(kedua ruas dikurangkan } 5x) \\ 2x - 5x & = 5x + 15 - 5x \\ -3x & = 15 \, \, \, \, \, \text{(kedua ruas dibagi } -3) \\ \frac{-3x}{-3} & = \frac{15}{-3} \\ x & = -5 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ -5 \} $.

Cara II : Menyamakan penyebutnya,
$ \begin{align} \frac{1}{5}x - 2 & = \frac{x-1}{2} \\ \frac{1}{5}x - 2 & = \frac{1}{2}x - \frac{1}{2} \, \, \, \, \, \text{(kedua ruas ditambahkan 2)} \\ \frac{1}{5}x - 2 + 2 & = \frac{1}{2}x - \frac{1}{2} + 2 \\ \frac{1}{5}x & = \frac{1}{2}x + \frac{3}{2} \, \, \, \, \, \text{(kedua ruas dikurangkan } \frac{1}{2}x ) \\ \frac{1}{5}x - \frac{1}{2}x & = \frac{1}{2}x + \frac{3}{2} - \frac{1}{2}x \\ \frac{2}{10}x - \frac{5}{10}x & = \frac{3}{2} \\ \frac{-3}{10}x & = \frac{3}{2} \, \, \, \, \, \text{(kedua ruas dikalikan } \frac{-10}{3} ) \\ \frac{-10}{3} \times \frac{-3}{10}x & = \frac{-10}{3} \times \frac{3}{2} \\ x & = \frac{-30}{6} \\ x & = -5 \end{align} $
Jadi, himpunan penyelesaiannya adalah $ x = \{ -5 \} $.

10). Persamaan linear $ 3x - 2 = m - x \, $ memiliki penyelesaian untuk $ x = 3. \, $ Tentukan nilai $ m $.
Penyelesaian :
*). Karena $ x = 3 \, $ adalah solusinya, maka bisa kita substitusikan ke persamaannya
$ \begin{align} x = 3 \rightarrow 3x - 2 & = m - x \\ 3 \times 3 - 2 & = m - 3 \\ 9 - 2 & = m - 3 \\ 7 & = m - 3 \, \, \, \, \, \text{(kedua ruas ditambahkan 3) } \\ 7 + 3 & = m - 3 + 3 \\ 10 & = m \end{align} $
Jadi, kita peroleh nilai $ m = 10 $ .

Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup


         Blog Koma - Matematika SMP : Hallow Teman-teman Koma. Bagaimana kabarnya? Mudah-mudahan baik-baik saja.

         Pada artikel ini kita akan membahas materi Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup yang merupakan bagian dari materi persamaan dan pertidaksamaan linear satu variabel. Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup adalah materi dasar yang harus dikuasai dulu untuk memudahkan mempelajari materi selanjutnya.

Pengertian Pernyataan dan Kalimat Tertutup
       Kalimat yang dinyatakan benar saja atau salah saja dan tidak kedua-duanya disebut kalimat tertutup atau Pernyataan.

Contoh soal Pernyataan dan Kalimat Tertutup :
1). Perhatikan kalimat-kalimat berikut,
a). Jakarta adalah ibu kota Indonesia.
b). Satu ditambah tiga sama dengan lima.
c). Tugu Monas terletak di Bandung.
d). Matahari terbenam di arah timur.
e). Siapakah presiden republik Indonesia yang pertama?
f). Berapakah dua ditambah 4?
g). Bali adalah salah satu provinsi yang ada di indonesia.
Dari kalimat-kalimat di atas, tentukan manakah yang merupakan pernyataan dan bukan.
Penyelesaian :
a). Jakarta adalah ibu kota Indonesia.
kalimat ini benar, sehingga termasuk pernyataan.

b). Satu ditambah tiga sama dengan lima.
kalimat ini salah, sehingga termasuk pernyataan.

c). Tugu Monas terletak di Bandung.
kalimat ini salah karena monas terletak di Jakarata, sehingga termasuk pernyataan.

d). Matahari terbenam di arah timur.
kalimat ini salah, sehingga termasuk pernyataan.

e). Siapakah presiden republik Indonesia yang pertama?
Kalimat ini tidak bisa ditentukan nilai kebenarannya (salah atau benar), sehingga bukan pernyataan, dan lebih tepatnya disebut kalimat pertanyaan.

f). Berapakah dua ditambah 4?
Kalimat ini tidak bisa ditentukan nilai kebenarannya (salah atau benar), sehingga bukan pernyataan, dan lebih tepatnya disebut kalimat pertanyaan.

g). Bali adalah salah satu provinsi yang ada di indonesia.
kalimat ini benar, sehingga termasuk pernyataan.

Pengertian Kalimat Terbuka
       Kalimat terbuka adalah kalimat yang memuat variabel dan belum diketahui nilai kebenarannya (belum bisa ditentukan bernilai benar atau salah).

       Variabel adalah lambang (simbol) pada kalimat terbuka yang dapat diganti oleh sebarang anggota himpunan yang telah ditentukan.

Variabel biasanya dilambangkan dengan huruf kecil.

       Konstanta adalah nilai tetap (tertentu) yang terdapat pada kalimat terbuka.

Contoh soal Kalimat Terbuka :
2). Sebutkan 5 contoh kalimat terbuka?
Penyelesaian :
*). Berikut adalah contoh-contoh kalimat terbuka :
i). $ y \, $ adalah bilangan prima kurang dari enam.
dengan variabel $ y $.

ii). Tiga dikurangkan dengan $ m \, $ menghasilkan 12.
dengan variabel $ m $.

iii). $ x + 9 = 3 $.
dengan variabel $ x $.

iv). $ 3a - 5 \geq 5 $.
dengan variabel $ a $.

v). $ x^2 + 3y - 5 = 12 $.
dengan variabel $ x \, $ dan $ \, y $ .

vi). Umur Andi ditambahkan dengan umur Budi adalah 25 tahun.
kalimat (vi) ini adalah contoh kalimat terbuka karena umur masing-masing bisa kita misalkan dengan suatu variabel. Misalkan umur Andi adalah $ a \, $ tahun dan umur budi adalah $ \, b \, $ tahun, maka kalimat terbukanya menjadi : $ a + b = 25 $.

Himpunan Penyelesaian Kalimat Terbuka
       Himpunan penyelesaian dari kalimat terbuka adalah himpunan semua pengganti dari variabel-variabel pada kalimat terbuka sehingga kalimat tersebut bernilai benar.

Contoh soal :
3). Tentukan himpunan penyelesaian dari kalimat terbuka berikut ini,
a). $ x + 3 = 5 $
b). $ 2y - 5 = 7 $
c). $ z^2 = 9 $.
Penyelesaian :
a). $ x + 3 = 5 $
$ x = 2 \, $ memenuhi kalimat terbuka $ x + 3 = 5 \, $ karena $ 2 + 3 = 5 $.
Sehingga himpunan penyelesaiannya : {2}.

b). $ 2y - 5 = 7 $
$ y = 6 \, $ memenuhi kalimat terbuka $ 2y - 5 = 7 \, $ karena $ 2 \times 6 - 5 = 7 $.
Sehingga himpunan penyelesaiannya : {6}.

c). $ z^2 = 9 $.
$ z = 3 \, $ dan $ z = -3 \, $ memenuhi kalimat terbuka $ z^2 = 9 \, $
karena $ 3^2 = 9 \, $ dan $ \, (-3)^2 = 9 $ .
Sehingga himpunan penyelesaiannya : $ \{-3, \, 3 \} $.

Catatan :
Soal nomor 3 bagian a) dan b) disebut sebagai persamaan linear satu variabel yang akan dibahas lebih lanjut pada materi berikutnya.

Jumat, 22 Januari 2016

Akar-akar dan Faktor Persamaan Suku Banyak


         Blog Koma - Artikel kali ini akan membahas materi Akar-akar dan Faktor Persamaan Suku Banyak. Untuk menentukan akar-akar persamaan suku banyak, kita akan menggunakan skema horner yang bisa kita pelajari pada materi "Menentukan Nilai Suku Banyak" dan "Operasi Pembagian Suku Banyak". Akar-akar dan Faktor Persamaan Suku Banyak tentu ada kaitannya dengan teorema faktor yang ada pada materi "Teorema Sisa dan Teorema Faktor pada Suku Banyak".

Pengertian Akar-akar Persamaan Suku Banyak
       Jika diketahui suatu suku banyak $ f(x) \, $ dan ($x - a$) adalah faktor dari $ f(x) $, maka $ a \, $ adalah akar dari persamaan $ f(x) \, $ yang memenuhi $ f(a) = 0 $.
Contoh soal akar-akar persamaan suku banyak :
1). Apakah 1 dan $ \, -1 \, $ merupakan akar dari persamaan suku banyak $ 2x^5 - 3x^2 + 2x - 1 $ ?
Penyelesaian :
*). Misalkan suku banyaknya $ f(x) = 2x^5 - 3x^2 + 2x - 1 \, $
*). Kita substitusi $ x = 1 \, $ dan $ x = -1 \, $ ke $ f(x) $.
$ \begin{align} x = 1 \rightarrow f(x) & = 2x^5 - 3x^2 + 2x - 1 \\ f(1) & = 2.1^5 - 3.1^2 + 2.1 - 1 \\ & = 2 - 3 + 2 - 1 \\ & = 0 \\ x = -1 \rightarrow f(x) & = 2x^5 - 3x^2 + 2x - 1 \\ f(-1) & = 2.(-1)^5 - 3.(-1)^2 + 2.(-1) - 1 \\ & = 2.(-1) - 3.(1) - 2 - 1 \\ & = -2 - 3 - 2 - 1 \\ & = -8 \end{align} $
*). Kita peroleh :
$ f(1) = 0 \, $ artinya $ x = 1 \, $ adalah akar dari suku banyaknya.
Karena $ x = 1 \, $ adalah akarnya, maka $ x = 1 \rightarrow x - 1 = 0 \, $ atau ($x - 1$) adalah faktor dari $ f(x) $.
$ f(-1) = -8 \, $ artinya $ x = -1 \, $ bukan akar dari suku banyaknya karena $ f(-1) \neq 0 $ .

Cara Menentukan Akar-akar dan faktor Persamaan Suku Banyak
Misalkan ada persamaan suku banyak
$ ax^n + cx^{n-1} + c_1x^{n-2} + ... +c_{n-1}x + b = 0 \, $
Langkah-langkah menentukan akar-akarnya :
(i). Menentukan akar-akar Rasional yang mungkin diperoleh dari pembagian faktor $ b \, $ dan faktor $ a \, $ atau $ \, \frac{ \text{faktor } b }{\text{faktor } a} $. Jika nilai $ a = 1 \, $ maka akar-akar yang mungkin hanya ditentukan oleh faktor dari $ b \, $ saja.
(ii). Dari akar-akar yang mungkin tersebut, kita substitusi ke bentuk suku banyaknya, jika hasilnya adalah nol maka bilangan tersebut adalah akar pertamanya.
(iii). Dari akar pertamanya tersebut, kita gunakan skema Horner untuk menentukan hasil pembagiannya.
Contoh Soal menentukan akar-akarnya :
2). Tentukan akar-akar dan faktor dari persamaan suku banyak $ \, x^3 + 2x^2 - 5x - 6 = 0 $.
Penyelesaian :
*). Suku banyaknya : $ f(x) = x^3 + 2x^2 - 5x - 6 \, $.
*). Akar-akar yang mungkin adalah dari faktor dari $ - 6 \, $ yaitu $ \{ \pm 1 , \, \pm 2, \, \pm 3, \, \pm 6 \} $.
Faktor disini maksudnya adalah pembaginya.
*). Kita akan substitusi akar-akar yang mungkin $ \{ \pm 1 , \, \pm 2, \, \pm 3, \, \pm 6 \} $ ke suku banyaknya.
$ \begin{align} x = 1 \rightarrow f(x) & = x^3 + 2x^2 - 5x - 6 \\ f(1) & = 1^3 + 2.1^2 - 5.1 - 6 \\ f(1) & = 1 + 2 - 5 - 6 = - 8 \\ x = -1 \rightarrow f(x) & = x^3 + 2x^2 - 5x - 6 \\ f(-1) & = (-1)^3 + 2(-1)^2 - 5.(-1) - 6 \\ f(-1) & = -1 + 2 + 5 - 6 = 0 \end{align} $
Karena $ f(-1) = 0 \, $ maka $ x = -1 \, $ adalah akar pertamanya.
*). Kita gunakan skema Horner :
Suku banyaknya : $ f(x) = x^3 + 2x^2 - 5x - 6 \, $ koefisiennya $ 1, \, 2, \, -5, \, -6 $
Akarnya : $ x = -1 \, $ atau faktornya ($x + 1$).
Hasilnya adalah $ x^2 + x - 6 \, $ . Artinya bentuk suku banyak $ x^3 + 2x^2 - 5x - 6 \, $ dapat difaktorkan menjadi
$ \begin{align} x^3 + 2x^2 - 5x - 6 & = 0 \\ (x^2 + x - 6)(x+1) & = 0 \\ (x-2)(x+3)(x+1) & = 0 \end{align} $
Sehingga faktor-faktor dari $ x^3 + 2x^2 - 5x - 6 = 0 \, $ adalah $ \, (x - 2), \, (x + 3) , \, $ dan $ \, (x + 1) $.
*). Menentukan akar-akarnya :
Faktor pertama : $ (x - 2) = 0 \rightarrow x = 2 $
Faktor kedua : $ (x + 3) = 0 \rightarrow x = -3 $
Faktor ketiga : $ (x + 1) = 0 \rightarrow x = -1 $
Jadi, akar-akarnya adalah $ \{ -3, \, -2, \, 2 \} $.

Catatan :
*). Bentuk persamaan kuadrat bisa langsung difaktorkan jika memang bisa difaktorkan.
*). Bentuk $ x^2 + x - 6 = (x-2)(x+3) \, $
*). Untuk pemfaktoran bentuk persamaan kuadrat, silahkan baca pada artikel "Menentukan akar-akar Persamaan Kuadrat".

3). Jika ($ x + 1$) adalah salah satu faktor dari $ 2x^3 - 3x^2+ px + 2 = 0 \, $, maka tentukan faktor-faktor lainnya.
Penyelesaian :
*). Misal suku banyaknya : $ f(x) = 2x^3 - 3x^2+ px + 2 \, $.
*). Menentukan nilai $ p $,
Karena ($ x + 1$) adalah faktor dari $ f(x) \, $ maka $ f(-1) = 0 $.
$ \begin{align} f(x) & = 2x^3 - 3x^2+ px + 2 \\ f(-1) & = 0 \\ 2(-1)^3 - 3(-1)^2+ p(-1) + 2 & = 0 \\ -2 - 3 -p + 2 & = 0 \\ - 3 -p & = 0 \\ p & = -3 \end{align} $
Sehingga suku banyaknya menjadi : $ f(x) = 2x^3 - 3x^2 - 3x + 2 $
*). Memfaktorkan suku banyak dengan skema horner :
Suku banyaknya : $ f(x) = 2x^3 - 3x^2 - 3x + 2 \, $ koefisiennya $ 2, \, -3, \, -3, \, 2 $
Faktornya ($x + 1$), sehingga akarnya : $ x + 1 = 0 \rightarrow x = -1 $.
Hasilnya adalah $ 2x^2 - 5x + 2 \, $ . Artinya bentuk suku banyak $ 2x^3 - 3x^2 - 3x + 2 \, $ dapat difaktorkan menjadi
$ \begin{align} 2x^3 - 3x^2 - 3x + 2 & = 0 \\ (2x^2 - 5x + 2)(x+1) & = 0 \\ (2x-1)(x-2)(x+1) & = 0 \end{align} $
Sehingga faktor-faktor dari $ 2x^3 - 3x^2 - 3x + 2 = 0 \, $ adalah $ \, (2x - 1), \, (x - 2) , \, $ dan $ \, (x + 1) $.
Jadi, faktor-faktor lainnya adalah $ \, (2x - 1), \, $ dan $ \, (x - 2) $ .

Operasi Akar-akar Persamaan Suku Banyak
       Berikut akan kita bahas operasi akar-akar persamaan suku banyak, maksudnya kita akan bahas rumus-rumusnya tanpa menentukan akar-akarnya terlebih dahulu.

Rumus-rumus operasi akar-akar :
*). Suku banyak berderajat 2 : $ ax^2 + bx + c = 0 \, $ akar-akarnya $ \, x_1, \, x_2 $
penjumlahan satu-satu : $ x_1 + x_2 = - \frac{b}{a} $
penjumlahan dua-dua : $ x_1 . x_2 = \frac{c}{a} $
*). Suku banyak berderajat 3 : $ ax^3 + bx^2 + cx + d = 0 \, $ akar-akarnya $ \, x_1, \, x_2, \, x_3 $
penjumlahan satu-satu : $ x_1 + x_2 + x_3 = - \frac{b}{a} $
penjumlahan dua-dua : $ x_1. x_2 + x_2.x_3 + x_1.x_3 = \frac{c}{a} $
penjumlahan tiga-tiga : $ x_1. x_2.x_3 = - \frac{d}{a} $
*). Suku banyak berderajat 4 : $ ax^4 + bx^3 + cx^2 + dx + e = 0 \, $ akar-akarnya $ \, x_1, x_2, x_3, x_4 $
penjumlahan satu-satu : $ x_1 + x_2 + x_3 + x_4 = - \frac{b}{a} $
penjumlahan dua-dua :
$ x_1. x_2 + x_1.x_3 + x_1.x_4 + x_2.x_3 + x_2.x_4 + x_3.x_4 = \frac{c}{a} $
penjumlahan tiga-tiga :
$ x_1. x_2.x_3 + x_2. x_3.x_4 + x_3. x_4.x_1 + x_4. x_1.x_2 = - \frac{d}{a} $
penjumlahan empat-empat : $ x_1. x_2.x_3 .x_4 = \frac{e}{a} $

Berlaku juga untuk suku banyak berderajat lebih dari 4, dengan pola rumus yang hampir mirip.
Contoh soal operasi akar-akar persamaan suku banyak :
4). Diketahui persamaan suku banyak $ x^3 - 2x^2 + 5x + 1 = 0 \, $ dengan akar-akar $ \, x_1, x_2, x_3 $.
Tentukan nilai :
a). $ x_1 + x_2 + x_3 $
b). $ x_1. x_2 + x_2.x_3 + x_1.x_3 $
c). $ x_1. x_2.x_3 $
Penyelesaian :
*). Untuk penyelesaian soal-soal ini, kita tidak perlu menentukan akar-akarnya terlebih dahulu, langsung saja kita gunakan rumus-rumus operasi akar-akar.
*). Menentukan koefisiennya : $ x^3 - 2x^2 + 5x + 1 = 0 \, $ maka $ a = 1, b = -2, c = 5, d = 1 $.
a). $ x_1 + x_2 + x_3 = -\frac{b}{a} = - \frac{-2}{1} = 2 $
b). $ x_1. x_2 + x_2.x_3 + x_1.x_3 = \frac{c}{a} = \frac{5}{1} = 5 $
c). $ x_1. x_2.x_3 = - \frac{d}{a} = -\frac{1}{1} = - 1 $

5). Jika 2 adalah salah satu akar persamaan $ \, 2x^4 - 6x^3 + px - 1 = 0 \, $ dengan akar-akar $ x_1, x_2, x_3, x_4 $ , maka tentukan jumlah akar-akarnya.
Penyelesaian :
*). Kita tidak perlu menentukan nilai $ \, p \, $ terlebih dahulu, tapi langsung menggunakan operasi akar-akarnya.
*). Menentukan koefisiennya : $ 2x^4 - 6x^3 + px - 1 = 0 \rightarrow a = 2, b = -6, c = 0, d = p, e = -1 $.
$ x_1 + x_2 + x_3 + x_4 = - \frac{b}{a} = - \frac{-6}{2} = 3 $
Jadi, jumlah akar-akarnya adalah 3.

5). Diketahui -2 dan 3 adalah akar-akar dari persamaan $ x^5 - 2x^3 + mx^2 + nx - 12 = 0 \, $ . Tentukan jumlah dan hasil kali akar-akar lainnya.
Penyelesaian :
*). Misalkan akar-akar dari persamaan adalah $ x_1, x_2, x_3, x_4, x_5 \, $ dengan $ x_1 = -2, x_2 = 3 $
*). $ x^5 - 2x^3 + mx^2 + nx - 12 = 0 \rightarrow a = 1, b = 0, c = -2, d = m, e = n, f = -12 $.
*). Karena yang diketahui adalah $ x_1 = -2 \, $ dan $ x_2 = 3 \, $ , maka pertanyaannya :
Jumlah akar-akar lainnya adalah $ x_3 + x_ 4 + x_ 5 $
Hasil kali akar-akar lainnya adalah $ x_3 . x_ 4 . x_ 5 $
*). Kita tidak perlu menentukan semua akar-akarnya terlebih dahulu, tapi langsung menggunakan rumus operasi akar-akarnya.
Jumlah akar-akar lainnya adalah $ x_3 + x_ 4 + x_ 5 $
$ \begin{align} x_1 + x_2 + x_3 + x_4 + x_ 5 & = - \frac{b}{a} \\ (-2) + 3 + x_3 + x_4 + x_ 5 & = - \frac{0}{1} \\ 1 + x_3 + x_4 + x_ 5 & = 0 \\ x_3 + x_4 + x_ 5 & = -1 \end{align} $
Hasil kali akar-akar lainnya adalah $ x_3 . x_ 4 . x_ 5 $
$ \begin{align} x_1 . x_2 . x_3 . x_4 . x_ 5 & = - \frac{f}{a} \\ (-2) . 3 . x_3 . x_4 . x_ 5 & = - \frac{-12}{1} \\ (-6) . x_3 . x_4 . x_ 5 & = 12 \\ x_3 . x_4 . x_ 5 & = \frac{12 }{-6} = -2 \end{align} $
Jadi, jumlah akar-akar lainnya adalah $ -1 $ dan hasil kali akar-akar lainnya adalah $ -2 $.

6). Diketahui $ x_1, x_2 $, dan $ x_3 $ adalah akar-akar persamaan $ 2x^3 - mx^2 - 18x + 36 = 0 $.
Tentukan: a). $ x_1 + x_2 + x_3 $
b). $ x_1. x_2 + x_2.x_3 + x_1.x_3 $
c). $ x_1. x_2.x_3 $
d). nilai $ m \, $ dan akar-akarnya jika $ x_2 \, $ adalah lawan dari $ x_1 $.
Penyelesaian :
*). Menentukan koefisiennya :
$ 2x^3 - mx^2 - 18x + 36 = 0 \, $ maka $ a = 2, b = -m, c = -18, d = 36 $.
a). $ x_1 + x_2 + x_3 = -\frac{b}{a} = - \frac{-m}{2} = \frac{m}{2} \, $ ....pers(i).
b). $ x_1. x_2 + x_2.x_3 + x_1.x_3 = \frac{c}{a} = \frac{-18}{2} = -9 \, $ ....pers(ii).
c). $ x_1. x_2.x_3 = - \frac{d}{a} = -\frac{36}{2} = - 18 \, $ ....pers(iii).

d). $ x_2 \, $ adalah lawan dari $ x_1 \, $ maksudnya $ x_2 = -x_1 $.
dari pers(i) :
$ \begin{align} x_1 + x_2 + x_3 & = \frac{m}{2} \\ x_1 + (-x_1) + x_3 & = \frac{m}{2} \\ x_3 & = \frac{m}{2} \\ m & = 2x_3 \end{align} $
dari pers(ii) :
$ \begin{align} x_1. x_2 + x_2.x_3 + x_1.x_3 & = -9 \\ x_1. (-x_1) + (-x_1).x_3 + x_1.x_3 & = -9 \\ -x_1^2 - x_1.x_3 + x_1.x_3 & = -9 \\ -x_1^2 & = -9 \\ x_1^2 & = 9 \\ x_1 & = \pm \sqrt{9} \\ x_1 & = \pm 3 \end{align} $
*). Menentukan akar-akar dan nilai $ m \, $ dari $ x_2 = -x_1, \, m = 2x_3, \, x_1 = \pm 3 $ .
*). Untuk $ x_ 1 = 3 , \, $ maka $ x_2 = -x_1 = -3 $.
pers(iii) :
$ x_1. x_2.x_3 = -18 \rightarrow 3. (-3). x_3 = -18 \rightarrow x_3 = 2 $.
$ m = 2x_3 = 2. 2 = 4 $.
Sehingga nilai $ m = 4, x_1 = 3, x_2 = -3, x_3 = 2 $
*). Untuk $ x_ 1 = -3 , \, $ maka $ x_2 = -x_1 = -(-3) = 3 $.
pers(iii) :
$ x_1. x_2.x_3 = -18 \rightarrow (-3). 3. x_3 = -18 \rightarrow x_3 = 2 $.
$ m = 2x_3 = 2. 2 = 4 $.
Sehingga nilai $ m = 4, x_1 = -3, x_2 = 3, x_3 = 2 $
Jadi, ada dua jenis nilai akar-akar yang kita peroleh.

Kamis, 21 Januari 2016

Teorema Sisa dan Teorema Faktor pada Suku Banyak


         Blog Koma - Pada artikel ini kita akan khusus membahas materi Teorema Sisa dan Teorema Faktor pada Suku Banyak. Sesuai dengan judulnya yaitu Teorema Sisa dan Teorema Faktor pada Suku Banyak, maka kita akan lebih memfokuskan pada sisa pembagian dan faktor pada suku banyaknya. Sebenarnya sisa pembagian suatu suku banyak sudah kita bahas pada artikel "Operasi Pembagian Suku Banyak" dimana untuk menentukan sisanya bisa menggunakan dua cara yaitu "cara bersusun" dan "cara skema Horner". Untuk memudahkan dalam mempelajari materi ini, sebaiknya baca juga materi "Pengertian Suku Banyak dan Operasinya", dan "Menentukan Nilai Suku Banyak".

Konsep Teorema Sisa pada Suku Banyak
Teorema Sisa 1
       Jika suku banyak $ f(x) $ dibagi ($x - k$), maka sisa pembagiannya adalah $ f(k) $.
atau dapat ditulis : $ \begin{align} \frac{f(x)}{x-k} \rightarrow \text{ Sisa } = f(k) \end{align} $.

Teorema Sisa 2
       Jika suku banyak $ f(x) $ dibagi ($ax + b$), maka sisa pembagiannya adalah $ f \left( -\frac{b}{a} \right) $.
atau dapat ditulis : $ \begin{align} \frac{f(x)}{ax+b} \rightarrow \text{ Sisa } = f \left( -\frac{b}{a} \right) \end{align} $.

Teorema Sisa 3
Jika suatu suku banyak $ f(x) $ dibagi $ (x - a)(x - b) $, maka sisanya adalah $ px + q \, $ di mana $ f(a) = pa + q \, $ dan $ f(b) = pb + q $ .
dapat ditulis :
$ \begin{align} \frac{f(x)}{(x-a)(x-b)} \rightarrow \text{ Sisa } = f(a) \, \text{ dan } \text{ Sisa } = f(b) \end{align} $.

Catatan :
*). Yang disubstitusi ke suku banyaknya adalah akar-akar dari pembaginya dengan cara disamadengankan nol.
teorema sisa 1 : pembaginya ($x-k$), akarnya $ x - k = 0 \rightarrow x = k $.
teorema sisa 2 : pembaginya ($ax + b$),
akarnya $ ax + b = 0 \rightarrow x = -\frac{b}{a} $.
teorema sisa 3 : pembaginya $ \, (x-a)(x-b)$,
akarnya $ (x-a)(x-b) = 0 \rightarrow x = a \, \text{ atau } \, x = b $.
Contoh Soal Teorema sisa :
1). Tentukanlah sisa pembagian dari $ f(x) = x^3 + 4x^2 + 6x + 5 \, $ dibagi ($x + 2$).
Penyelesaian :
*). Dengan teorema sisa 1 : $ \begin{align} \frac{f(x)}{x+2} \rightarrow \text{ Sisa } = f(-2) \end{align} $
$ \begin{align} f(x) & = x^3 + 4x^2 + 6x + 5 \\ \text{ Sisa } & = f(-2) \\ & = (-2)^3 + 4.(-2)^2 + 6(-2) + 5 \\ & = -8 + 4.4 -12 + 5 \\ & = -8 + 16 -12 + 5 \\ & = 1 \end{align} $
Sehingga sisa pembagiannya adalah 1.

*). Cara Skema Horner :
Akar pembaginya : $ x + 2 = 0 \rightarrow x = -2 $.
Koefisien suku banyak : $ x^3 + 4x^2 + 6x + 5 \, $ adalah $ 1, \, 4, \, 6, \, 5 $.
Sehingga sisa pembagiannya adalah 1.

2). Tentukan sisa pembagian dari $ f(x) = 5x^3 + 21x^2 + 9x - 1 \, $ dibagi ($5x + 1$).
Penyelesaian :
*). Dengan teorema sisa 2 : $ \begin{align} \frac{f(x)}{5x + 1} \rightarrow \text{ Sisa } = f \left( - \frac{1}{5} \right) \end{align} $
$ \begin{align} f(x) & = 5x^3 + 21x^2 + 9x - 1 \\ \text{ Sisa } & = f \left( - \frac{1}{5} \right) \\ & = 5\left( - \frac{1}{5} \right)^3 + 21 \left( - \frac{1}{5} \right)^2 + 9\left( - \frac{1}{5} \right) - 1 \\ & = 5\left( - \frac{1}{125} \right) + 21 \left( \frac{1}{25} \right) + 9\left( - \frac{1}{5} \right) - 1 \\ & = - \frac{5}{125} + \left( \frac{21}{25} \right) - \frac{9}{5} - 1 \\ & = - \frac{1}{25} + \left( \frac{21}{25} \right) - \frac{45}{25} - 1 \\ & = - \frac{25}{25} - 1 \\ & = - 1 - 1 \\ & = -2 \end{align} $
Sehingga sisa pembagiannya adalah $ - 2 $ .

*). Cara Skema Horner :
Akar pembaginya : $ 5x + 1 = 0 \rightarrow x = -\frac{1}{5} $.
Koefisien suku banyak : $ 5x^3 + 21x^2 + 9x - 1 \, $ adalah $ 5, \, 21, \, 9, \, -1 $.
Sehingga sisa pembagiannya adalah $ - 2 $ .

3). Jika $ f(x) = x^3 - 2x^2 + 3x - 1 \, $ dibagi $ x^2 + x - 2 $ , tentukanlah sisa pembagiannya.
Penyelesaian :
*). Dengan teorema sisa 3 :
$ \begin{align} \frac{f(x)}{x^2 + x - 2} = \frac{f(x)}{(x+2)(x-1)} \rightarrow \text{ Sisa } = f(-2) \, \text{ dan } \text{ Sisa } = f(1) \end{align} $
*). Karena pembaginya berderajat 2, maka sisa pembagiannya maksimal berderajat 1.
misalkan sisanya : sisa $ = mx + n $.
kita akan menentukan nilai $ m $ dan $ n $ dari teorema sisa.
*. Menyusun persamaan dari $ \text{ Sisa } = f(-2) \, \text{ dan } \text{ Sisa } = f(1) $ ,
persamaan pertama :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(-2) \\ m(-2) + n & = f(-2) \\ -2m + n & = (-2)^3 - 2(-2)^2 + 3(-2) - 1 \\ -2m + n & = -23 \, \, \, \, \, \text{....pers(i)} \end{align} $
persamaan kedua :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(1) \\ m(1) + n & = f(1) \\ m + n & = (1)^3 - 2.(1)^2 + 3(1) - 1 \\ m + n & = 1 \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). Eliminasi pers(i) dan pers(ii)
$ \begin{array}{cc} m + n = 1 & \\ -2m + n = -23 & - \\ \hline 3m = 24 & \\ m = 8 & \end{array} $
Pers(ii) : $ m + n = 1 \rightarrow 8 + n = 1 \rightarrow n = -7 $.
Sehingga sisanya yaitu :
sisa $ = mx + n = 8x - 7 $.
Jadi, sisa pembagiannya adalah $ \, 8x - 7 $.

Konsep Teorema Faktor pada Suku Banyak
       Jika suku banyak $ f(x) $ suatu suku banyak, maka ($x - k$) merupakan faktor dari $ f(x) $ jika dan hanya jika $ f(k) = 0 $.
Hubungan Teorema Sisa dan Teorema Faktor pada Suku Banyak
       Misalkan suku banyak $ f(x) \, $ dibagi dengan ($ x - k$) memberikan sisa = 0, maka bentuk ($x - k$) adalah faktor dari suku banyak $ f(x) $. Dengan kata lain, jika bentuk ($x-k$) adalah faktor maka sisanya nol atau suku banyak $ f(x) $ habis dibagi oleh ($x-k$).
Contoh soal Teoerema Faktor pada suku banyak :
4). Tunjukkan bahwa ($x + 5$) merupakan faktor dari $ P(x) = x^3 + 4x^2 + 11x + 80$.
Penyelesaian :
*). ($x + 5$) adalah faktor dari $ P(x) = x^3 + 4x^2 + 11x + 80 \, $ jika memenuhi $ P(-5) = 0 $.
*). Kita cek apakah $ P(-5) = 0 \, $ atau tidak.
$ \begin{align} P(x) & = x^3 + 4x^2 + 11x + 80 \\ P(-5) & = (-5)^3 + 4(-5)^2 + 11(-5) + 80 \\ & = -125 + 4(25) - 55 + 80 \\ & = -125 + 100 - 55 + 80 \\ & = 0 \end{align} $
Karena nilai $ P(-5) = 0 , \, $ maka benar bentuk ($x+5$) adalah faktor dari $ P(x) $.

5). Jika ($x - 1$) adalah faktor dari suku banyak $ f(x) = ax^{2017} - bx^{2015} + 4 \, $, maka tentukan sisa pembagian $ f(x) \, $ dengan ($x+1$).
Penyelesaian :
*). ($x - 1$) adalah faktor dari suku banyak $ f(x) = ax^{2017} - bx^{2015} + 4 \, $, maka berlaku $ f(1) = 0 $.
$ \begin{align} f(x) & = ax^{2017} - bx^{2015} + 4 \\ f(1) & = 0 \\ a.1^{2017} - b.1^{2015} + 4 & = 0 \\ a - b + 4 & = 0 \\ a - b & = - 4 \, \, \, \, \, \, \text{(kali -1)} \\ -a + b & = 4 \, \, \, \, \, \, \text{....pers(i)} \end{align} $
*). $ f(x) = ax^{2017} - bx^{2015} + 4 \, $ dibagi ($x + 1$), maka sisa $ = f(-1) $.
Gunakan pers(i) di atas juga.
$ \begin{align} f(x) & = ax^{2017} - bx^{2015} + 4 \\ \text{sisa } & = f(-1) \\ & = a.(-1)^{2017} - b.(-1)^{2015} + 4 \\ & = a.(-1) - b.(-1) + 4 \\ & = -a + b + 4 \\ & = (-a + b) + 4 \, \, \, \, \, \text{ ........(gunakan pers(i))} \\ & = 4 + 4 \\ & = 8 \end{align} $
Jadi, sisa pembagian $ f(x) \, $ oleh ($x+1$) adalah 8.

6). Diketahui $ f(x) \, $ dibagi ($x-1$) bersisa 2 dan $ f(x) \, $ dibagi ($x+2$) bersisa -1. Tentukan sisa pembagian $ f(x) \, $ oleh $ x^2 + x - 2 $.
Penyelesaian :
*). Teorema sisa :
$ \begin{align} \frac{f(x)}{x-1} \rightarrow \text{ Sisa } = f(1) \end{align} , \, $ dengan sisa 3
artinya $ f(1) = 2 $.
$ \begin{align} \frac{f(x)}{x+2} \rightarrow \text{ Sisa } = f(-2) \end{align} , \, $ dengan sisa -1
artinya $ f(-2) = -1 $.
*). pembagian $ f(x) \, $ oleh $ x^2 + x - 2 = (x+2)(x-1) $, karena pembaginya berderajat 2, maka sisanya kita misalkan $ mx + n $.
kita akan menentukan nilai $ m $ dan $ n $ dari teorema sisa.
*. Menyusun persamaan dari $ \text{ Sisa } = f(-2) \, \text{ dan } \text{ Sisa } = f(1) $ ,
persamaan pertama :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(-2) \\ m(-2) + n & = f(-2) \\ -2m + n & = -1 \, \, \, \, \, \text{....pers(i)} \end{align} $
persamaan kedua :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(1) \\ m(1) + n & = f(1) \\ m + n & = 2 \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). Eliminasi pers(i) dan pers(ii)
$ \begin{array}{cc} m + n = 2 & \\ -2m + n = -1 & - \\ \hline 3m = 3 & \\ m = 1 & \end{array} $
Pers(ii) : $ m + n = 2 \rightarrow 1 + n = 2 \rightarrow n = 1 $.
Sehingga sisanya yaitu :
sisa $ = mx + n = 1.x + 1 = x + 1 $.
Jadi, sisa pembagiannya adalah $ \, x + 1 $.

7). Suku banyak $ f(x) \, $ dibagi dengan $ x^2 - 2x -8 \, $ memberikan sisa $ 2x +3 \, $ dan dibagi dengan $ x^2 + x - 6 \, $ memberikan sisa $ x - 1$ . Tentukan sisa pembagian $ f(x) \, $ oleh $ x^2 - 4 $.
Penyelesaian :
*). Teorema sisa :
$ \begin{align} \frac{f(x)}{x^2 - 2x -8} = \frac{f(x)}{(x+2)(x-4)} \rightarrow \text{ Sisa } = f(-2) \, \text{ dan } \text{ Sisa } = f(4) \end{align} $
dengan sisa $ (2x +3 ) , \, $ sehingga :
$ \text{ Sisa } = f(-2) \rightarrow f(-2) = 2.(-2) + 3 = -4 + 3 = -1 $.
$ \text{ Sisa } = f(4) \rightarrow f(4) = 2.(4) + 3 = 8 + 3 = 11 $.
$ \begin{align} \frac{f(x)}{x^2 + x - 6} = \frac{f(x)}{(x-2)(x+3)} \rightarrow \text{ Sisa } = f(2) \, \text{ dan } \text{ Sisa } = f(-3) \end{align} $
dengan sisa $ ( x - 1 ) , \, $ sehingga :
$ \text{ Sisa } = f(2) \rightarrow f(2) = 2 - 1 = 1 $.
$ \text{ Sisa } = f(-3) \rightarrow f(-3) = -3 - 1 = -4 $.
*). pembagian $ f(x) \, $ oleh $ x^2 - 4 = (x+2)(x-2) $, karena pembaginya berderajat 2, maka sisanya kita misalkan $ mx + n $.
kita akan menentukan nilai $ m $ dan $ n $ dari teorema sisa.
Disini kita hanya menggunakan nilai fungsi $ f(-2) = -1 \, $ dan $ f(2) = 1 \, $ sesuai akar-akar pembaginya.
*. Menyusun persamaan dari $ \text{ Sisa } = f(-2) \, \text{ dan } \text{ Sisa } = f(2) $ ,
persamaan pertama :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(-2) \\ m(-2) + n & = f(-2) \\ -2m + n & = -1 \, \, \, \, \, \text{....pers(i)} \end{align} $
persamaan kedua :
$ \begin{align} \text{ Sisa } & = mx + n \\ \text{ Sisa } & = f(2) \\ m(2) + n & = f(1) \\ 2m + n & = 1 \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). Eliminasi pers(i) dan pers(ii)
$ \begin{array}{cc} 2m + n = 1 & \\ -2m + n = -1 & - \\ \hline 4m = 2 & \\ m = \frac{1}{2} & \end{array} $
Pers(ii) : $ 2m + n = 1 \rightarrow 2.(\frac{1}{2} ) + n = 1 \rightarrow n = 0 $.
Sehingga sisanya yaitu :
sisa $ = mx + n = \frac{1}{2}x + 0 = \frac{1}{2}x $.
Jadi, sisa pembagiannya adalah $ \, \frac{1}{2}x $.

8). Suku banyak $ Q(2x - 3) \, $ dibagi dengan ($ x - 1 $) memberikan sisa 4.
Tentukan sisa pembagian suku banyak $ P(x) = (x^2 - 3x + 4). Q(x) + x^2 + x -2 \, $ oleh ($x + 1 $).
Penyelesaian :
*). $ \begin{align} \frac{Q(2x-3)}{x-1} \rightarrow \text{ Sisa } = Q(2.1-3) = Q(-1) \end{align} , \, $ dengan sisa 4
artinya $ Q(-1) = 4 $.
*). $ \begin{align} \frac{P(x)}{x+1} \rightarrow \text{ Sisa } = P(-1) \end{align} \, $
dengan nilai $ Q(-1) = 4 , \, $ , maka sisanya :
$ \begin{align} P(x) & = (x^2 - 3x + 4). Q(x) + x^2 + x -2 \\ \text{ Sisa } & = P(-1) \\ & = ((-1)^2 - 3(-1) + 4). Q(-1) + (-1)^2 + (-1) -2 \\ & = (1 + 3 + 4). 4 + 1 -1 -2 \\ & = (8). 4 -2 \\ & = 32 -2 \\ & = 30 \end{align} $
Jadi, sisa pembagian $ P(x) \, $ oleh ($x + 1 $) adalah 30.

9). Misalkan suku banyak $ P(x) = x^5 + ax^3 + b \, $ dibagi ($x^2 -1$) sisanya adalah ($2x + 1$). Tentukan nilai $ a \, $ dan $ b $.
Penyelesaian :
*). Teorema sisa :
$ P(x) \, $ dibagi $ \, (x^2 - 1) = (x-1)(x+1) \, $ , sisa = $ P(1) \, $ dan sisa $ = P(-1) $.
Sehingga : sisa $ = 2x + 1 $.
sisa = $ P(1) \rightarrow 2.1 + 1 = P(1) \rightarrow P(1) = 3 $
sisa = $ P(-1) \rightarrow 2.(-1) + 1 = P(-1) \rightarrow P(-1) = -1 $
*. Menyusun persamaan dari $ P(1) = 3 \, \text{ dan } P(-1) = -1 $ ,
persamaan pertama :
$ \begin{align} P(x) & = x^5 + ax^3 + b \\ P(1) & = 3 \\ 1^5 + a.1^3 + b & = 3 \\ 1 + a + b & = 3 \\ a + b & = 2 \, \, \, \, \, \text{....pers(i)} \end{align} $
persamaan kedua :
$ \begin{align} P(x) & = x^5 + ax^3 + b \\ P(-1) & = -1 \\ (-1)^5 + a.(-1)^3 + b & = -1 \\ -1 - a + b & = -1 \\ -a + b & = 0 \\ a & = b \, \, \, \, \, \text{....pers(ii)} \end{align} $
*). Substitusi $ a = b \, $ ke pers(i)
pers(i) : $ a + b = 2 \rightarrow b + b = 2 \rightarrow 2b = 2 \rightarrow b = 1 $.
Sehingga nilai $ a = b = 1 $.
Jadi, kita peroleh nilai $ \, a = b = 1 $.

10). Tentukan nilai $ p \, $ agar bentuk pecahan $ \frac{x^3 + 2px^2 + 1}{x^2 - x - 6} \, $ dapat disederhanakan.
Penyelesaian :
*). Diketahui pecahan : $ \frac{x^3 + 2px^2 + 1}{x^2 - x - 6} \, $
Agar pecahan tersebut bisa disederhanakan, maka pembilangnya $ f(x) = (x^3 + 2px^2 + 1) \, $ harus memiliki faktor yang sama dengan penyebutnya $(x^2 - x - 6) $.
*). Faktor penyebutnya : $ (x^2 - x - 6) = (x + 2)(x-3) \, $ yang juga sebagai faktor dari pembilangnya.
*). Menentukan nilai $ p $
faktor pertama :
$ (x + 2) \, $ faktor dari $ f(x) = (x^3 + 2px^2 + 1) \, $ sehingga $ f(-2) = 0 $.
$ \begin{align} f(x) & = (x^3 + 2px^2 + 1) \\ f(-2) & = 0 \\ (-2)^3 + 2p.(-2)^2 + 1 & = 0 \\ -8 + 8p + 1 & = 0 \\ -7 + 8p & = 0 \\ 8p & = 7 \\ p & = \frac{7}{8} \end{align} $
faktor kedua :
$ (x-3) \, $ faktor dari $ f(x) = (x^3 + 2px^2 + 1) \, $ sehingga $ f(3) = 0 $.
$ \begin{align} f(x) & = (x^3 + 2px^2 + 1) \\ f(3) & = 0 \\ (3)^3 + 2p.(3)^2 + 1 & = 0 \\ 27 + 18p + 1 & = 0 \\ 28 + 18p & = 0 \\ 18p & = -28 \\ p & = \frac{-28}{18} = - \frac{14}{9} \end{align} $
Jadi, nilai $ p = \frac{7}{8} \, $ atau $ \, p = - \frac{14}{9} $.

Rabu, 20 Januari 2016

Operasi Pembagian Suku Banyak


         Blog Koma - Sebelumnya pada artikel "Pengertian Suku Banyak dan Operasinya" telah kita bahas operasi suku banyak yaitu penjumlahan, pengurangan, dan perkalian. Pada artikel ini kita akan melanjutkan operasi suku banyak yaitu Operasi Pembagian Suku Banyak yang tentu cara pengerjaannya akan lebih rumit dari operasi sebelumnya yang sudah dibahas. Algoritma pembagian ada dua cara yang akan dibahas di sini yaitu pembagian cara bersusun dan pembagian cara Horner.

Derajat Pembagian Suku Banyak
       Misalkan ada suku banyak $ F(x) \, $ berderajat $ m \, $ dibagi dengan suku banyak $ P(x) \, $ berderajat $ n \, $ akan memberikan hasil bagi $ H(x) \, $ yang berderajat $ m - n \, $ dan sisanya $ S(x) \, $ yang berderajat maksimal $ n - 1 $.

Bentuk pembagiannya adalah :
$ \frac{F(x)}{P(x)} = H(x) + \frac{S(x)}{P(x)} \, $ atau dengan mengalikan $ P(x) \, $,
kita diperoleh : $ F(x) = P(x).H(x) + S(x) $.
Pembagian Suku Banyak Cara Bersusun
       Misalkan, suku banyak $ F(x) = ax^3 + bx^2 + cx + d \, $ dibagi oleh $ (x - k)$. Dengan pembagian cara susun, maka dapat dilakukan perhitungan sebagai berikut.

Catatan :
*). Bagi pangkat tertingginya terlebih dahulu.
*). Jika pembaginya pangkat satu ($x-k$), maka sisanya adalah konstanta.
*). Pembagian cara bersusun ini bisa digunakan untuk semua jenis pembagian suku banyak.
Contoh soal pembagian suku banyak cara bersusun :
1). Tentukanlah hasil bagi dan sisa pembagian suku banyak berikut.
a). $ 2x^3 + 4x^2 - 18 \, $ dibagi $ x - 3$.
b). $ 2x^3 + 3x^2 + 5 \, $ dibagi $ x + 1 $.
Penyelesaian :
a). $ 2x^3 + 4x^2 - 18 \, $ dibagi $ x - 3$.
Pembagian cara bersusun :
Keterangan Proses perhitungan :
*). Baris 1 : $ 2x^3 + 4x^2 - 18 \, $ dapat ditulis $ 2x^3 + 4x^2 + 0x - 18 \, $ agar mudah dalam perhitungan.
*). Baris 1 : $ 2x^3 + 4x^2 - 18 \, $ dibagi dengan $ x - 3 \, $, pembagian dilakukan pangkat tertinggi $ 2x^3 \, $ dengan $ x \, $ hasilnya $ 2x^2 $ .
*). Baris 2 : $ 2x^2 - 6x^2 \, $ diperoleh dari perkalian hasil $ 2x^2 \, $ dengan $ x - 3 $.
*). Baris 3 : $ 10x^2 + 0x - 18 \, $ diperoleh dengan mengurangkan baris 1 dan baris 2.
*). Baris 3 : $ 10x^2 + 0x - 18 \, $ dibagi dengan $ x - 3 \, $, pembagian dilakukan pangkat tertinggi $ 10x^2 \, $ dengan $ x \, $ hasilnya $ 10x $ .
*). Baris 4 : $ 10x^2 - 30x \, $ diperoleh dari perkalian hasil $ 10x \, $ dengan $ x - 3 $.
*). Baris 5 : $ 30x - 18 \, $ diperoleh dengan mengurangkan baris 3 dan baris 4.
*). Baris 5 : $ 30x - 18 \, $ dibagi dengan $ x - 3 \, $, pembagian dilakukan pangkat tertinggi $ 30x \, $ dengan $ x \, $ hasilnya $ 30 $ .
*). Baris 6 : $ 30x - 90 \, $ diperoleh dari perkalian hasil $ 30 \, $ dengan $ x - 3 $.
*). Baris 7 : $ 72 \, $ diperoleh dengan mengurangkan baris 5 dan baris 6.
Karena baris 7 : $ 72 \, $ pangkat variabelnya sudah dibawah pangkat pembaginya ($x -3$), maka pembagian dihentikan.

Sehingga kita peroleh :
Hasilnya : $ 2x^2 + 10x + 30 \, $ dan sisa pembagiannya $ \, 72 $.
Analisa derajatnya :
Suku banyak : $ F(x)=2x^3 + 4x^2 - 18 \, $ berderajat 3,
Pembaginya : $ P(x) = x - 3 \, $, berderajat 1.
Hasil baginya : $ H(x) = 2x^2 + 10x + 30 \, $ berderajat $ 3 -1 = 2 $ .
Sisa pembagiannya : $ S(x) = 72 \, $ , berderajat dibawah derajat pembaginya.
Dapat kita susun menjadi :
$ \begin{align} F(x) & = P(x).H(x) + S(x) \\ 2x^3 + 4x^2 - 18 & =( x - 3) .(2x^2 + 10x + 30) + 72 \end{align} $

b). $ 2x^3 + 3x^2 + 5 \, $ dibagi $ x + 1 $.
Pembagian cara bersusun :
*). Sehingga kita peroleh :
Hasilnya : $ 2x^2 + x - 1 \, $ dan sisa pembagiannya $ \, 6 $.

2). Tentukan hasil dan sisa pembagian dari suku banyak $ x^4 + x^2 - 16 \, $ oleh $ x^2 + 3x + 2 \, $?
Penyelesaian :
$ x^4 + x^2 - 16 \, $ dibagi $ x^2 + 3x + 2 $.
Pembagian cara bersusun :
*). Sehingga kita peroleh :
Hasilnya : $ x^2 - 6 x + 17 \, $ dan sisa pembagiannya $ \, -63x-50 $.

*). Analisa derajatnya :
Suku banyak : $ F(x)=x^4 + x^2 - 16 \, $ berderajat 4,
Pembaginya : $ P(x) = x^2 + 3x + 2 \, $, berderajat 2.
Hasil baginya : $ H(x) = x^2 - 6 x + 17 \, $ berderajat $ 4 - 2 = 2 $ .
Sisa pembagiannya : $ S(x) = -63x-50 \, $ , berderajat dibawah derajat pembaginya.

Pembagian Suku Banyak Cara Skema Horner dengan pembagi ($x-k$)
       Jika terdapat suku banyak $ f(x) = ax^3 + bx^2 + cx + d \, $ dibagi ($x - k$) menghasilkan $ h(x) $ sebagai hasil bagi dan $ f(k) $ sebagai sisa pembagian, sedemikian hingga $ f(x) = (x - k) h(x) + f(k)$.
Skema Hornernya yaitu :
Keterangan :
*). Sisa pembagiannya : $ f(k) = ak^3 + bk^2 + ck + d $.
*). Hasil baginya : $ H(x) = ax^2 + (ak+b)x + (ak^2 + bk+ c) \, $ dengan koefisiennya $ a, \, (ak+b), \, (ak^2 + bk+ c) $.
*). untuk pengisian akarnya, kita sama dengankan nol bentuk pembaginya, sehingga $ x - k = 0 \rightarrow x = k $.

*). Untuk pengisian lainnya pada cara skema horner, silahkan baca materinya pada artikel "Menentukan Nilai Suku Banyak".
Contoh soal pembagian suku banyak cara skema horner.
3). Pada soal nomor 1 di atas kita akan menggunakan cara skema horner.
Tentukanlah hasil bagi dan sisa pembagian suku banyak berikut.
a). $ 2x^3 + 4x^2 - 18 \, $ dibagi $ x - 3$.
b). $ 2x^3 + 3x^2 + 5 \, $ dibagi $ x + 1 $.
Penyelesaian :
a). $ 2x^3 + 4x^2 - 18 \, $ dibagi $ x - 3$.
Pembagian cara skema horner :
Akar pembaginya : $ x - 3 = 0 \rightarrow x = 3 $.
Koefisien suku banyak : $ 2x^3 + 4x^2 - 18 \, $ adalah $ 2, \, 4, \, 0, \, -18 $.
Proses penghitungan :
*). Sehingga kita peroleh :
Hasilnya : $ 2x^2 + 10x + 30 \, $ dan sisa pembagiannya $ \, 72 $.

b). $ 2x^3 + 3x^2 + 5 \, $ dibagi $ x + 1 $.
Pembagian cara skema horner :
Akar pembaginya : $ x + 1 = 0 \rightarrow x = -1 $.
Koefisien suku banyak : $ 2x^3 + 3x^2 + 5 \, $ adalah $ 2, \, 3, \, 0, \, 5 $.
*). Sehingga kita peroleh :
Hasilnya : $ 2x^2 + x - 1 \, $ dan sisa pembagiannya $ \, 6 $.

Pembagian Suku Banyak Cara Skema Horner dengan pembagi ($ax+b$)
       Suku banyak $ f(x) $ dibagi ($x - k$) menghasilkan $ h(x) $ sebagai hasil bagi dan $ f(k) $ sebagai sisa pembagian, sedemikian sehingga $ f(x) = (x - k) h(x) + f(k) $ . Pembagian suku banyak $ f(x) $ dibagi $ (ax + b) $ , dapat diubah menjadi bentuk $ f(x) $ dibagi $ x - \left( - \frac{b}{a} \right) \, $ . Berarti, nilai $ k = - \frac{b}{a} $ , sehingga pada pembagian suku banyak $ f(x) $ tersebut dapat dilakukan perhitungan sebagai berikut.
$ \begin{align} f(x) & = (x - k) . h(x) + f(k) \\ & = \left( x - \left( - \frac{b}{a} \right) \right) . h(x) + f \left( - \frac{b}{a} \right) \\ & = \left( x + \frac{b}{a} \right) . h(x) + f \left( - \frac{b}{a} \right) \\ & = \frac{1}{a}( ax + b) . h(x) + f \left( - \frac{b}{a} \right) \\ f(x) & = ( ax + b) . \frac{h(x)}{a} + f \left( - \frac{b}{a} \right) \\ f(x) & = P(x). H(x) + S(x) \end{align} $

Sehingga kita peroleh :
Pembagi : $ P(x) = (ax + b) $,
Hasil bagi : $ H(x) = \frac{h(x)}{a} $
dan sisa : $ S(x) = f \left( - \frac{b}{a} \right) $ .
Contoh soal pembagian suku banyak skema horner bentuk $ (ax+b)$ :
4). Tentukanlah hasil bagi dan sisanya jika memakai cara horner.
a). $ f(x) = 2x^3 + x^2 + 5x - 1 \, $ dibagi $ (2x - 1) $
b). $ f(x) = 2x^3 + x^2 + x + 10 \, $ dibagi $ (2x + 3) $
Penyelesaian :
a). $ f(x) = 2x^3 + x^2 + 5x - 1 \, $ dibagi $ (2x - 1) $
Pembagian cara skema horner :
Akar pembaginya : $ 2x - 1 = 0 \rightarrow x = \frac{1}{2} \, $ dengan $ a = 2 $.
Koefisien suku banyak : $ 2x^3 + x^2 + 5x - 1 \, $ adalah $ 2, \, 1, \, 5, \, -1 $.
*). Kita peroleh : $ h(x) = 2x^2 + 2x + 6 \, $
sehingga hasilnya : $ H(x) = \frac{h(x)}{a} = \frac{2x^2 + 2x + 6}{2} = x^2 + x + 3 $.
dan sisa pembagiannya $ \, 2 $.

b). $ f(x) = 2x^3 + x^2 + x + 10 \, $ dibagi $ (2x + 3) $
Pembagian cara skema horner :
Akar pembaginya : $ 2x + 3 = 0 \rightarrow x = -\frac{3}{2} \, $ dengan $ a = 2 $.
Koefisien suku banyak : $ 2x^3 + x^2 + x + 10 \, $ adalah $ 2, \, 1, \, 1, \, 10 $.
*). Kita peroleh : $ h(x) = 2x^2 - 2x + 4 \, $
sehingga hasilnya : $ H(x) = \frac{h(x)}{a} = \frac{2x^2 - 2x + 4}{2} = x^2 - x + 2 $.
dan sisa pembagiannya $ \, 4 $.

Catatan :
*). Untuk pembagian suku banyak dengan pembagi berderajat lebih dari 1, sebaiknya menggunakan pembagian cara bersusun saja. Pada artikel lain akan kita bahas tentang pembagian suku banyak dengan pembagi berderajat lebih dari 1 baik bisa difaktorkan atau tidak pembaginya.