Operasi Hitung pada Matriks

         Blog Koma - Operasi hitung pada matriks yang ada pada matriks adalah operasi pnjumlahan, operasi pengurangan, perkalian bilangan real dengan matriks (perkalian skalar), dan perkalian dua matriks (perkalian matriks). Untuk memudahkan dalam penguasaan operasi hitung pada matriks, kita harus memahami tentang ordo matriks yang bisa sobat baca pada artikel "Pengenalan Matriks". Berikut penjelasan masing-masing.

         Operasi hitung pada matriks sebenarnya tidaklah sulit, hanya butuh ketelitian ekstra dalam perhitungannya. Dari semua operasi hitung yang akan kita bahas, operasi Perkalian dua matriks yang agak sulit bentuk perhitungannya, karena kita akan mengkombinasikan operasi perkalian dan penjumlahan. Tapi tenang saja, dengan banyak berlatih melakukan perkalian dua matriks, maka kita pasti akan terbiasa dalam melakukan operasi perhitungan dua matriks atau lebih.

         Pada Operasi hitung matriks, kenapa tidak ada pembagian? ini terjadi karena pada perkalian matriks tidak bersifat komutatif. Semisalkan bentuk $ \frac{A}{B} = \frac{1}{B} \times A \neq A \times \frac{1}{B} \, $ . Dari bentuk inilah maka operasi hitung pembagian pada matriks tidak ada. Yang ada nantinya adalah bentuk invers dari matriks dikalikan dengan matriks bukan inversnya.

Penjulahan dua matriks
Misalkan A dan B adalah matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ b_{ij} $ . Jika matriks C adalah jumlah matriks A dengan matriks B, ditulis C = A + B, matriks C juga berordo $ m \times n \, $ dengan elemen-elemen ditentukan oleh:
$ c_{ij} = a_{ij} + b_{ij} \, $ (untuk semua $ i \, $ dan $ j$).
Sifat-sifat penjumlahan pada matriks
*). Komutatif : $A + B = B + A$
*). Assosiatif : $(A + B) + C = A + (B + C) $
*). penjumlahan berulang : $ kA = \underbrace{A + A + A + ... + A}_{\text{sebanyak } k} $
Pengurangan dua matriks
Misalkan A dan B adalah matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ b_{ij} $ . Jika matriks C adalah pengurangan matriks A dengan matriks B, ditulis C = A $ - $ B, matriks C juga berordo $ m \times n \, $ dengan elemen-elemen ditentukan oleh:
$ c_{ij} = a_{ij} - b_{ij} \, $ (untuk semua $ i \, $ dan $ j$).
Catatan:
Dua matriks dapat dijumlahkan atau dikurangkan jika dan hanya jika memiliki ordo yang sama. Ordo matriks hasil penjumlahan atau pengurangan dua matriks sama dengan ordo matriks yang dijumlahkan.

Untuk lebih memahami maksud dari teori di atas, langsung saja kita simak contoh - contoh berikut.
Contoh 1
Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) , \, B = \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) $
$ C = \left( \begin{matrix} 3 & 2 \\ -1 & 6 \end{matrix} \right), \, D = \left( \begin{matrix} x & -1 \\ 2 & y + 3 \end{matrix} \right) $
Tentukan hasil dari :
a). $ A + B \, $ b). $ A - B \, $ c). $ A + C \, $ d). $ C + D $
Penyelesaian :
a). $ A + B $
$ \begin{align} A + B & = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) + \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 + 5 & -1 + 2 & 3 + (-1) \\ 1 + 2 & 4 + 1 & (-2) + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 7 & 1 & 2 \\ 3 & 5 & 1 \end{matrix} \right) \end{align} $
b). $ A - B $
$ \begin{align} A - B & = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) - \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 - 5 & -1 - 2 & 3 - (-1) \\ 1 - 2 & 4 - 1 & (-2) - 3 \end{matrix} \right) \\ & = \left( \begin{matrix} -3 & -3 & 4 \\ -1 & 3 & -5 \end{matrix} \right) \end{align} $
c). $ A + C $
Operasi hitung $ A + C \, $ tidak bisa dilakukan karena ordonya berbeda.
d). $ C + D $
$ \begin{align} C + D & = \left( \begin{matrix} 3 & 2 \\ -1 & 6 \end{matrix} \right) + \left( \begin{matrix} x & -1 \\ 2 & y + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 3 + x & 2 + (-1) \\ (-1) + 2 & 6 + (y + 3) \end{matrix} \right) \\ & = \left( \begin{matrix} x + 3 & 1 \\ 1 & y + 9 \end{matrix} \right) \end{align} $

Perkalian Suatu Bilangan Real dengan Matriks
Misalkan A adalah suatu matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ k \, $ adalah suatu bilangan real. Matriks C adalah hasil perkalian bilangan real $ k \, $ terhadap matriks A, dinotasikan: $ C = k.A, \, $ bila matriks C berordo $ m \times n \, $ dengan elemen-elemennya ditentukan oleh: $ c_{ij} = k.a_{ij} $ (untuk semua $ i \, $ dan $ j$).
Contoh 2
Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) , \, B = \left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) $
Tentukan hasil dari :
a). $ 3A \, $ b). $ -2B \, $ c). $ A + 3B \, $ d). $ 2A - 3B $
Penyelesaian :
a). $ 3A $
$ \begin{align} 3A & = 3\left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) \\ & = \left( \begin{matrix} 3.2 & 3.(-1) \\ 3.1 & 3.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 6 & -3 \\ 3 & 12 \end{matrix} \right) \end{align} $
b). $ -2B $
$ \begin{align} -2 B & = -2 \left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} -2.5 & -2.2 \\ -2.2 & -2.1 \end{matrix} \right) \\ & = \left( \begin{matrix} -10 & -4 \\ -4 & -2 \end{matrix} \right) \end{align} $
c). $ A + 3B $
$ \begin{align} A + 3B & = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) + 3\left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) + \left( \begin{matrix} 15 & 6 \\ 6 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 + 15 & -1 + 6 \\ 1 + 6 & 4 + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 17 & 5 \\ 7 & 7 \end{matrix} \right) \end{align} $ d). $ 2A - 3B $
$ \begin{align} 2A - 3B & = 2\left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) - 3\left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} 4 & -2 \\ 2 & 8 \end{matrix} \right) - \left( \begin{matrix} 15 & 6 \\ 6 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 4 - 15 & -2 - 2 \\ 2 - 2 & 8 - 1 \end{matrix} \right) \\ & = \left( \begin{matrix} -11 & -4 \\ 0 & 7 \end{matrix} \right) \end{align} $

Perkalian Dua Matriks


Jika C adalah matriks hasil perkalian matriks A$_{m \times n} \, $ dan matriks B$_{n \times p} \, $, dinotasikan C = A $ \times $ B, maka
*). Matriks C berordo $ m \times p$.
*). Elemen-elemen matriks C pada baris ke-$i$ dan kolom ke-$j$, dinotasikan $c_{ij}$, diperoleh dengan cara mengalikan elemen baris ke-$i$ matriks A dan elemen kolom ke-$j$ matriks B, kemudian dijumlahkan.
Dinotasikan $ c_{ij} = a_{i1}.b_{1j} + a_{i2}.b_{2j} + a_{i3}.b_{3j} + ... + a_{in}.b_{nj} $
Catatan :
*). pada perkalian dua matriks $ AB \, $ hasilnya belum tentu sama dengan $ BA $
*). Dua matriks bisa dikalikan jika dan hanya jika banyak kolom matriks pertama sama dengan banyak baris matriks kedua.
Sifat-sifat perkalian pada matriks
*). Assosiatif : $(A \times B) \times C = A \times (B \times C) $
*). Distributif : $ A \times (B+C) = A \times B + A \times C $
*). Pangkat : $ A^n = \underbrace{A \times A \times A \times ... \times A}_{n \text{ faktor}} $
Contoh 3
Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) , \, B = \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) $
$ C = \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) , \, D = \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) $
$ P = \left( \begin{matrix} -1 & 3 & 2 \\ 1 & 1 & 1 \end{matrix} \right) , \, Q = \left( \begin{matrix} 1 & 2 \\ -3 & 5 \\ 6 & -2 \end{matrix} \right) $
Tentukan hasil dari :
a). $ AB \, $ b). $ CD \, $ c). $ DC \, $ d). $ PQ $ e). $PC$
Penyelesaian :
a). $ AB $
$ \begin{align} AB & = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} a.e+b.g & a.f + b.h \\ c.e + d.g & c.f + d.h \end{matrix} \right) \end{align} $
b). $ CD $
$ \begin{align} CD & = \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} 1.5+2.7 & 1.6+2.8 \\ 3.5 + 4.7 & 3.6 + 4.8 \end{matrix} \right) \\ & = \left( \begin{matrix} 5+14 & 6+16 \\ 15 + 28 & 18 + 32 \end{matrix} \right) \\ & = \left( \begin{matrix} 19 & 22 \\ 43 & 50 \end{matrix} \right) \end{align} $
c). $ DC $
$ \begin{align} DC & = \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} 5.1+6.3 & 5.2+6.4 \\ 7.1 + 8.3 & 7.2 + 8.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 5+18 & 10+24 \\ 7 + 24 & 14 + 32 \end{matrix} \right) \\ & = \left( \begin{matrix} 23 & 24 \\ 31 & 46 \end{matrix} \right) \end{align} $
terlihat bahwa hasil $ CD \neq DC $

d). $ PQ $
$ \begin{align} PQ & = \left( \begin{matrix} -1 & 3 & 2 \\ 1 & 1 & 1 \end{matrix} \right) \left( \begin{matrix} 1 & 2 \\ -3 & 5 \\ 6 & -2 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} -1.1 + 3.(-3) + 2.6 & -1.2 + 3.5 + 2.(-2) \\ 1.1 + 1. (-3) + 1.6 & 1.2 + 1. 5 + 1.(-2) \end{matrix} \right) \\ & = \left( \begin{matrix} -1 + (-9) + 12 & -2 + 15 + (-4) \\ 1 + (-3) + 6 & 2 + 5 + (-2) \end{matrix} \right) \\ & = \left( \begin{matrix} 2 & 9 \\ 4 & 5 \end{matrix} \right) \end{align} $
e). $ PC $
operasi $ PC \, $ tidak bisa dihitung karena tidak memenuhi syarat ordonya, yaitu banyak kolom matriks $ P \, $ (3 kolom) tidak sama dengan banyak baris matriks $ C \, $ (ada 2 baris).

         Demikian untuk pembahasan operasi hitung pada matriks. Sobat bisa melanjutkan membaca materi determinan dan invers suatu matriks. Kami yakin, dengan banyak berlatih operasi hitung pada matriks, maka teman-teman pasti akan bisa untuk melahap semua soal-soal yang berkaitan dengan operasi hitung matriks seperti operasi penjumlahan, pengurangan, kali skalar, dan kali dua matriks. Semoga materi pada artikel ini bermanfaat untuk kita semua. Terima kasih untuk kunjungannya ke blog koma ini.

Pengenalan Matriks

         Blog Koma - Matriks adalah salah satu materi wajib yang dipelajari oleh siswa di tingkat SMA. Materi matriks ini menurut saya cukup mudah, hanya saja butuh kesabaran dan ketelitian dalam melakukan penghitungan pada matriks. Pada pengenalan matriks ini kita akan mempelajari beberapa materi yaitu :

Isi Materi matriks :

         Materi Pengenalan Matriks ini hanya membahas sampai kesamaan dua matriks, artinya sub materi seperti operasi hitung, determinan dan invers, serta penerapan matriks akan kita bahas pada artikel lainnya. Pengenalan matriks ini sangat penting bagi kita dalam mempelajari matriks secara matematis sebagai pendahuluan untuk pengetahuan kita tentang matriks.

         Matriks secara umum akan melibatkan angka-angka atau aljabar yang disusun dalam entri-entri tertentu (letaknya pada baris dan kolom ke-$(i,j)$ ). Dalam mempelajari matriks, kita harus teliti karena jika salah satu unsur saja maka akan mengakibatkan kesalahan pada komponen yang lainnya. Ini akan memaksa kita untuk melakukan penghitungan ulang, dan tentu itu akan sangat membutuhkan waktu yang tidak sedikit.

         Berikut penjelasan masing-masing,
Definisi Matriks
       Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu susunan berbentuk persegipanjang. Susunan bilangan itu diletakkan di dalam kurung biasa "( )" atau kurung siku "[ ]". Masing-masing bilangan dalam matriks disebut entri atau elemen.
Biasanya pelabelan suatu matriks dinyatakan dengan huruf kapital, misalnya A, B, C, D, ..., dan seterusnya. Misalkan berikut ada matriks A,

keterangan : $a_{ij} \, $ bilangan real, menyatakan elemen matriks pada baris ke-$i \, $ dan kolom ke-$j, \, i = 1,2,3,...,m; \, j = 1,2,3,...,n. $
$A_{m \times n} \, $ : $ \, m \, $ menyatakan banyak baris matriks A dan $ \, n \, $ menyatakan banyak kolom matriks A.
Ordo Matriks
       Ordo (ukuran) matriks menyatakan ukuran banyaknya baris dan kolom suatu matriks, yang biasanya dinotasikan dengan $ m \times n \, $ (baris $ \times \, $ kolom) , dimana $ m \, $ menyatakan banyak baris dan $ n \, $ menyatakan banyak kolom.
contoh - contoh matriks,
Contoh 1
Berikut contoh matriks
a). Matriks $ A = \left( \begin{matrix} 3 & -1 & 0 \\ 1 & 7 & 5 \end{matrix} \right) $
Matriks $ A \, $ berordo $ 2 \times 3 \, $ artinya banyak baris ada 2 dan kolom ada 3.
nilai elemen baris 1 kolom 1 adalah 3 ($a_{11}=3$)
nilai elemen baris 1 kolom 2 adalah -1 ($a_{12}=-1$)
nilai elemen baris 1 kolom 3 adalah 0 ($a_{13}=-1$)
nilai elemen baris 2 kolom 1 adalah 1 ($a_{21}=1$)
nilai elemen baris 2 kolom 2 adalah 7 ($a_{22}=7$)
nilai elemen baris 2 kolom 3 adalah 5 ($a_{23}=5$)

b). Matriks $ P = \left[ \begin{matrix} -3 & 4 \\ 1 & 6 \end{matrix} \right] $
Matriks $ P \, $ berordo $ 2 \times 2 \, $ artinya banyak baris ada 2 dan kolom ada 2.
nilai elemen baris 1 kolom 1 adalah -3 ($p_{11}=-3$)
nilai elemen baris 1 kolom 2 adalah 4 ($p_{12}=4$)
nilai elemen baris 2 kolom 1 adalah 1 ($p_{21}=1$)
nilai elemen baris 2 kolom 2 adalah 6 ($p_{22}=6$)
Contoh 2
Tentukan matriks $ 2 \times 2 \, $ , dengan $ B = [b_{ij}] \, $ yang memenuhi kondisi $ b_{ij} = j^{(i+1)} $ !
Penyelesaian : Misalkan matriksnya yaitu
Matriks $ B_{2 \times 2 } = \left[ \begin{matrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{matrix} \right] $
Dengan kondisi $ b_{ij} = j^{(i+1)} $
$\clubsuit \,$ Menentukan nilai elemennya dengan $ b_{ij} = j^{(i+1)} $
$ b_{11} = 1^{(1+1)} = 1^2 = 1 $
$ b_{12} = 2^{(1+1)} = 2^2 = 4 $
$ b_{21} = 1^{(2+1)} = 1^3 = 1 $
$ b_{22} = 2^{(2+1)} = 2^3 = 8 $
Jadi, matriks yang dimaksud adalah $ B = \left[ \begin{matrix} 1 & 4 \\ 1 & 8 \end{matrix} \right] $

         Berikut beberapa jenis matriks yang dimaksud
a). Matriks Baris
         Matriks baris adalah matriks yang terdiri atas satu baris saja. Biasanya, ordo matriks seperti ini, $ 1 \times n, \, $ dengan $ n \, $ banyak kolomnya.
Contohnya : $ A = \left[ \begin{matrix} 1 & 3 & 2 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 0 & -10 & 3 & 15 \end{matrix} \right] \, $
b). Matriks Kolom
         Matriks kolom adalah matriks yang terdiri atas satu kolom saja. Matriks kolom berordo $ m \times 1, \, $ dengan $ m \, $ banyak barisnya.
Contohnya : $ A = \left[ \begin{matrix} 5 \\ 3 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} -7 \\ 2 \\ 21 \end{matrix} \right] \, $
c). Matriks Persegi (bujur sangkar)
         Matriks persegi adalah matriks yang mempunyai banyak baris dan kolom sama. Matriks ini memiliki ordo $ n \times n. $

Contohnya : $ A = \left[ \begin{matrix} 51 & 3 \\ 31 & 100 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 1 & 2 & 3 \\ 3 & 5 & 1 \\ 9 & 10 & 12 \end{matrix} \right] \, $
catatan :
*). Pada matriks ada istilah diagonal utama (primer) dan diagonal samping (sekunder) seperti matriks berikut ini,


*). Pada matriks persegi ada istilah "Trace". Trace dari matriks adalah jumlahan elemen-elemen diagonal utama
Contohnya : $ A = \left[ \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 7 & 2 & 3 \\ 3 & 6 & 1 \\ 9 & 10 & 12 \end{matrix} \right] \, $
Trace(A) = 1 + 5 = 6, dan Trace(B) = 7 + 6 + 12 = 35.
d). Matriks Segitiga
         Matriks segitiga adalah matriks bujur sangkar yang elemen-elemen di bawah atau di atas elemen diagonal utama bernilai nol. Jika yang bernilai nol adalah elemen-elemen di bawah elemen diagonal utama maka disebut matriks segitiga atas, sebaliknya disebut matriks segitiga bawah. Dalam hal ini, juga tidak disyaratkan bahwa elemen diagonal utama harus bernilai tak nol.
Contohnya : $ A = \left[ \begin{matrix} 2 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 7 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 4 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 5 & 9 \end{matrix} \right] \, $
e). Matriks Diagonal
         Matriks diagonal adalah matriks persegi dengan pola semua elemennya bernilai nol, kecuali elemen diagonal utama.
Contohnya : $ A = \left[ \begin{matrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 5 \end{matrix} \right] \, $
f). Matriks skalar
         Matriks skalar adalah matriks diagonal yang semua elemen pada diagonal utamanya bernilai sama.
Contohnya : $ A = \left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right] \, $ dan $ B = \left[ \begin{matrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{matrix} \right] \, $
g). Matriks Identitas
         Jika suatu matriks persegi semua elemen diagonal utamanya adalah 1 dan unsur yang lainnya semua nol disebut matriks identitas. Matriks identitas dinotasikan sebagai $ I \, $ berordo $ n \times n. $
Contohnya : $ I = \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] , \, I = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \, $ dan $ I = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right] \, $
h). Matriks Nol
         Jika semua elemen suatu matriks semuanya bernilai nol disebut matriks nol.
Contohnya : $ O = \left[ \begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix} \right] , \, O = \left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right] \, $ dan $ O = \left[ \begin{matrix} 0 & 0 & 0 & 0 \end{matrix} \right] \, $
i). Matriks Simetri
         Matriks A disebut simetris jika dan hanya jika $ A = A^t $
(matriksnya sama dengan transposenya)
Contohnya : $ A = \left[ \begin{matrix} 4 & 2 \\ 2 & 3 \end{matrix} \right] , \, $ trasposenya : $ A^t = \left[ \begin{matrix} 4 & 2 \\ 2 & 3 \end{matrix} \right] $
ini berarti matriks A adalah matriks simetri.
j). Matriks Ortogonal
         Matriks A orthogonal jika dan hanya jika $ A^t = A^{-1} $
$ A^{-1} \, $ menyatakan invers dari matriks A, untuk materi invers matriks bisa sobat baca artikel "Determinan dan Invers Matriks"
Contohnya : $ A = \left[ \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right] , \, $ trasposenya : $ A^t = \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] , \, $ inversnya : $ A^{-1} = \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] $

karena $A^t = A^{-1} , \, $ maka matriks A adalah matriks ortogonal.

         Transpose matriks adalah perubahan baris menjadi kolom atau kolom menjadi baris. Dengan adanya transpose maka ordo matriksnya juga berubah, misalkan awalnya ordo matriks $ m \times n \, $ dan setelah di transpose ordo berubah menjadi $ n \times m $ .
         Untuk simbol transpose biasanya menggunakan pangkat $ t \, $ atau $ T \, $ . Misalkan ada matriks A, transpose matriks A adalah $ A^t \, $ atau $ A^T . \, $ Jika tidak menggunakan huruf $ t \, $ , biasanya akan diberikan keterangan bahwa yang dipakai tersebut adalah melambangkan transpose, misalkan $ \overline{A} \, $ atau $ A^\prime $ .
Contohnya :
$ A = \left[ \begin{matrix} 1 & 3 & 2 \\ 5 & 6 & 9 \end{matrix} \right]_{2 \times 3}, \, $ transposenya $ \, A^t = \left[ \begin{matrix} 1 & 5 \\ 3 & 6 \\ 2 & 9 \end{matrix} \right]_{3 \times 2} \, $
$ B = \left[ \begin{matrix} -4 & 5 \\ 1 & 2 \end{matrix} \right]_{2 \times 2}, \, $ transposenya $ \, B^t = \left[ \begin{matrix} -4 & 1 \\ 5 & 2 \end{matrix} \right]_{2 \times 2} \, $
$ C = \left[ \begin{matrix} 2 & 7 & 8 \end{matrix} \right]_{1 \times 3}, \, $ transposenya $ \, C^t = \left[ \begin{matrix} 2 \\ 7 \\ 8 \end{matrix} \right]_{3 \times 1} \, $
Sifat - sifat transpose matriks
1). $( A^t)^t = A $
2). $ (A + B)^t = A^t + B^t $
3). $ (A - B)^t = A^t - B^t $
4). $ (AB)^t = B^tA^t $
5). $ (kA)^t = k(A)^t $

Matriks A dan matriks B dikatakan sama (A = B), jika dan hanya jika:
i. Ordo matriks A sama dengan ordo matriks B.
ii. Setiap pasangan elemen yang seletak pada matriks A dan matriks B sama, $a_{ij} = b_{ij} \, $ (untuk semua nilai $ i \, $ dan $ j \, $).
Contoh 3
Diantara matriks - matriks berikut, manakah yang sama !
$ A = \left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 3 \end{matrix} \right] , \, B = \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] , \, C = \left[ \begin{matrix} 2 & -1 & 9 \end{matrix} \right] $
$ P = \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] , \, Q = \left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 3 \end{matrix} \right] , \, R = \left[ \begin{matrix} 2 \\ -1 \\ 9 \end{matrix} \right] $
Penyelesaian :
Matriks yang sama adalah $ A = Q \, $ dan $ B = P $
Contoh 4
Diketahui matriks - matriks
$ A = \left( \begin{matrix} 6 & 1 & 2 \\ 1 & 3 & 4 \end{matrix} \right) , \, $ dan $ B = \left( \begin{matrix} 2x + 4 & 1 \\ 1 & y - 1 \\ 3x + z - 2 \end{matrix} \right) $
Jika $ A^t = B , \, $ maka tentukan nilai $ x + y + z $ ?
Penyelesaian :
$\spadesuit \, $ Menentukan transposenya :
$ A = \left( \begin{matrix} 6 & 1 & 2 \\ 1 & 3 & 4 \end{matrix} \right) \Rightarrow A^t = \left( \begin{matrix} 6 & 1 \\ 1 & 3 \\ 2 & 4 \end{matrix} \right) $
$\spadesuit \, $ Menentukan nilai $ x, y, z $
$ \begin{align} A^t & = B \\ \left( \begin{matrix} 6 & 1 \\ 1 & 3 \\ 2 & 4 \end{matrix} \right) & = \left( \begin{matrix} 2x + 4 & 1 \\ 1 & y - 1 \\ 3x + z - 2 & 4 \end{matrix} \right) \end{align} $
Diperoleh persamaan :
$ 2x + 4 = 6 \rightarrow 2x = 6- 4 \rightarrow 2x = 2 \rightarrow x = 1 $
$ y - 1 = 3 \rightarrow y = 4 $
$ 3x + z - 2 = 2 \rightarrow 3.1 + z - 2 = 2 \rightarrow z = 1 $
sehingga nilai $ x + y + z = 1 + 4 + 1 = 6 $

         Pada Pengenalan matriks ini kita hanya mempelajari materi dasarnya saja. Meskipun demikian, pengenalan matriks ini sangat penting bagi kita, terutama bagi pemula yang ingin menguasai materi matriks dengan mudah dan benar. Soal-soal Matriks biasanya sering keluar untuk ujian nasional maupun untuk tes seleksi masuk perguruan tinggi. Jadi, matriks ini bisa kita target untuk mendulang nilai karena materinya mudah , hanya saja butuh ketelitian lebih untuk mengerjakan soal-soalnya. Dengan banyak berlatih baik teori maupun soalnya, kita pasti akan bisa.